DU LITTORAL L I s I c

COTE D'OPALE MACHINE LEARNING PIPELINES DESIGN U L

Moncef Garouani, Mourad Bouneffa, Adeel Ahmad
< mgarouani@gmail.com & +33 644779907

Contexte Key concepts

e Automated selection & parametrization of machine learning algorithms. Automated Machine Learning (AutoML) Auto ML is often used to help

¢ Guided Hyperparameters optimization. domain experts, who typically have limited ML expertise, in order to generate
and build high quality models to better meet their specific business needs.
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e Optimal performance of ML models for a given classification task.
e Explainability of the recommended models. Meta-learning refers to the algorithms that are concerned with their own

e Application to the Industry 4.0. learning process as well as learning across a series of related prediction tasks.

Explainable AutoML (XAutoML) provide a set of tools and frameworks to

e Empirical study on manufacturing data for validation and usabilit
P Y 5 Y better understand and interpret the predictions of a machine-learning model.

purposes.
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Suggested configurations What-If Analysis
Select Observation Prediction
Recommendation 1: RandomForestClassifier Expected accuracy : 0.97917 ciest from It orpick st random
=5 - bl probabili
Recommendation 2 : GradientBoostingClassifier Expected accuracy : 0.97826 Ta Al Fig 131 | o.; =.,
Gradient Boosting Classifier Recommended model configuration 210 1
Class sklearn.ensemble.GradientBoostingClassifier " . Vai
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Gradient boosting classifiers are a group of machine learning algorithms that combine many max_features sqrt Reason Effect IW:G{:[::(;IDUUD” to prediction probability = 67.06%
weak learning models together to create a strong e model . Gradient boosting models
are becoming popular because of their effectiveness at classifying complex datasets, and have earning_rate 10 Average of population 95.49% -
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AMLBID package .
AMLBID is a self-explainable AutoML system in the form of a Python- rracs e @ rodm vwasics (@) sussss oo § Ty
package. The system proposes a transparent and justified analysis to discover e @D i@ 5@ PUEY N TAR VE . N
the most suitable model for optimal performance among multiple ML models. A\ .
It attempts to automate the process of the algorithms selection, the tunning of SRR O (0 WUR . SO (P Y
hyperparameters, and traceability in supervised ML. R el
1 from AMLBID.recommender import AMLBID_Recommender
2 from AMLBID.explainer import AMLBID_Explainer R
3 from AMLBID.loader import =*
4 . . .
° . . . . -
N Garouani, M., Ahmad, A. Bouneffa, et al. Using meta-learning for automated
: Data,X_train,Y_train,X_test,Y_test=load_data("Dataset.csv") algorithms selection and configuration: an experimental framework for big
7 industrial data. Journal of Big Data 9, 57 (2022). https://doi.org/10.1186/s40537-022-00612-4
8 #Generate the optimal configurations
> model ,config=AMLBID_Recommender .recommend (Data, e Garouani, M., Ahmad, A. Bouneffa, M, et al. Towards big industrial data mining
0 metric="Accuracy", through explainable automated machine learning. The International Journal of Advanced
1 mode="Recommender_Explainer") . .
- Manufacturing Technology (2022). https://doi.org/10.1007/s00170-022-08761-9
2 model .fit (X_train, Y_train) f g gy( ) p 1" g/ /
3 e Garouani, M., Ahmad, A. Bouneffa, M. et al. AMLBID: An E E
4 #Generate the interactive explanatory dash . . . .
) - i _ Automated Machine Learning tool for Big Industrial Data. SoftwareX :
5 Explainer = AMLBID_Explainer.explain(model, config, ) .
5 X_test, Y_test) (2021) 100919, https://doi.org/10.1016/j.s0ftx.2021.100919
7 Explainer.dash() e Scan the QR Code to explore all results and publications
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