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XStacking : An effective and inherently explainable framework for stacked
ensemble learning
Moncef Garouani *“+", Ayah Barhrhouj "~ Olivier Teste
2 [RIT, UMR 5505 CNRS, Université Touwlouse Capitole, Toulouse, 31000, France
b Aix-Marseille University, CNRS, LIS (UMR 7020), Marseille, 13007, France . N
< IRIT, UMR 5505 CNRS, Université Toulouse, UT2J, Toulouse, 31000, France https://doi.org/10.1016/j.inffus.2025.103358
ARTICLE INFO ABSTRACT
Keywords: Ensemble Machine Learning (EML) techniques, especially stacking, have proven effective in boosting pre-
'-'-_ﬂﬂfhiﬂe"?m“flg dictive performance by combining several base models. However, traditional stacked ensembles often face
'fmﬂf‘b'e'em“g challenges in predictive effectiveness of the learning space and model interpretability, which limit their
Stacking practical application. In this paper, we introduce XStacking, an effective and inherently explainable framework

Explainable artificial intelligence

that addresses these limitations by integratin namic feature transformation with model-agnostic Shaple
Shapley additive explanations y Integ g dy g pley

Additive Explanations. XStacking is designed to enhance both effectiveness and transparency, ensuring high
predictive accuracy and providing clear insights into model decisions. We evaluated the framework on 29
benchmark datasets for classification and regression tasks, showing its competitive performance compared to
state-of-the-art stacked ensembles. Furthermore, XStacking interpretability features offer actionable insights
into feature contributions and decision pathways, making it a practical and scalable solution for applications
where both high performance and model transparency are critical.
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~ Ensemble learning

¢ ldea: Combine predictions from multiple models — better accuracy & robustness

“* Why it works:
» Reduces variance & bias
= Captures diverse data patterns

% Common approaches:
= Bagging — parallel, variance reduction (e.g., Random Forest)
= Boosting — sequential, bias reduction (e.g., XGBoost, AdaBoost)
= Stacking — meta-learning on predictions of base models
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/ | "_‘.‘:"Stacking — Inner Working & Advantages

“* How it works:
* Train multiple diverse base models on the same dataset

* Each base model produces predictions for all samples

* Create a new dataset from these predictions

* Train a meta-learner on this new dataset to make final predictions

* Key idea:
* Meta-learner combines complementary insights
* Learns to weight base models’ outputs for better accuracy

% Advantages:

Combines strengths of heterogeneous models (not limited to same model family)
Captures complementary patterns in data & strengths of diverse models

More flexible and more powerful in complex problems beyond bagging or boosting
Proven effective across domains: healthcare, finance, NLP, etc.

More flexible than Bagging (reduces variance) and Boosting (reduces bias).
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"'.‘:"Stacking — Limitations

% Learning space issues:
* Meta-learner input = base models’ predictions
* May be insufficiently informative if :
* predictions are limited in diversity
* Base models are highly correlated or redundant

% Transparency challenges:
* Meta-learner and base models often “black boxes”
* Hard to trace how predictions are derived

* Complex interactions between models make feature contribution unclear
* Low interpretability — reduced trust and accountability
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7 | "_":'XStacking: Explanation-Guided Stacked Ensemble Learning

% Goal: Improve predictive effectiveness of the learning space and stacking model interpretability

¢ Inspiration:
* Like in human decision-making:
We don't just consider people’'s recommendations — we consider why they made them

* Human decision-making uses rationales & explanations

% Key Idea:
* Build a stacking ensemble guided by explanations, not just final predictions
* Mimic human reasoning: combines both outputs and rationales of base models
* Use feature importance (e.g., Shapley values) from each base classifier
* Concatenate explanations from all base models — enriched learning space
* Train meta-learner using explanations form base learners



7 | "_":'XStacking: Explanation-Guided Stacked Ensemble Learning

% Goal: Improve predictive effectiveness of the learning space and stacking model interpretability

¢ Inspiration:
* Like in human decision-making:
We don't just consider people’'s recommendations — we consider why they made them

* Human decision-making uses rationales + explanations

The use of the explanation space,
instead of raw data, /leads to
improved subgroup separability

% Key Idea:
* Build a stacking ensemble guided by explanations, not just final predictions -
* Mimic human reasoning: combines both outputs and rationales of base models ot
* Use feature importance (e.g., Shapley values) from each base classifier
* Concatenate explanations from all base models — enriched learning space oy 2
* Train meta-learner using explanations form base learners " v
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".'.’:"XStacking: Explanation-Guided Stacked Ensemble Learning

Original Data Base Learners Shapley values Meta-model Final Predictions

** Pipeline:
* Train multiple base classifiers on original data

Train Explain

I

* Generate predictions' explanations for each sample
* Concatenate explanations — build new enriched dataset
* Train stacking meta-learner on enriched input

Training phase |

Predict

&5
New | — (eield) -G —

instance

. iy s —

Inference phase |

* Benéfits:
* Captures complementary knowledge from diverse models
* Provides richer, more informative input for meta-learner

* Bridges gap between accuracy and interpretability
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v ".'"'::"XStacking: Explanation-Guided Stacked Ensemble Learning
C O Experimental study

* 29 datasets from PMLB benchmark O Base learners: + Traditional Stacking (Scikit-learn)
* 17 classification, 12 regression tasks * Tree-based: Decision Trees * Same datasets, same setup
eLinear: Logistic / Linear Regression - Assess improvement from

* Varied domains: categorical, ordinal, . . .

. *Neural: Multilayer Perceptrons explanation-based learning space

and continuous features
O Meta-Learners:
* Train/test split: 70 30 .
s sl 70% 3%

* XGBoost §
2
Prediction Prediction

Linear




"-'-‘:'XStacking: Explanation-Guided Stacked Ensemble Learning

d Experimental study: research questions

> RQ1 (Effectiveness) — How effective is XStacking for classification and regression tasks?
» RQ2 (Efficiency) — How computationally efficient is XStacking?

> RQ3 (Explainability) — How explainable are the results produced by XStacking?



":'XStacking: Explanation-Guided Stacked Ensemble Learning

d Experimental study: Effectiveness of XStacking (RQ1)

SVM Meta Learner

XGB Meta Learner

Dataset Stacking | XStacking | Stacking | XStacking
iris 1 1 1 1
digits 0.9666 0.9729 | 0.9648 0.9685
wine 0.9629 0.9629 0.9444 0.9444
breast_cancer 0.9649 0.9824 0.9707 | (0.959
Personal Loan 0.984 0.984 | 0.984 0.9873
diabetes 0.7705 | 0.7489 0.7705 | 0.7229
adult 0.8366 0.8454 | 0.8366 0.8624
chess 0.9927 0.9927 0.9927 0.9927
mushroom 1 1 1 1
vehicle 0.7204 0.7795 0.7362 0.7519
cme 0.5633 0.5656 0.561 0.5701
splice 0.8766 0.8023 0.R766 0.9007
car 0.9653 0.9653 0.9653 | 0.9556
churn 0.902 0.9086 | 0.9026 0.9466
shuttle 0.9992 0.9992 0.9993 0.9993
hypothyroid 0.9768 0.9799 0.9768 0.9778
Breast-cancer 0.7325 0.7558 0.7325 0.7441

SVM Meta Learner

XGB Meta Learner

09/17 best

09/17 best

16/17 equal or better

14/17 equal or better

Table 2. Comparison of XStacking and baseline performance
in classification tasks based on Accuracy.

Dataset Stacking | XStacking | Stacking | XStacking
wind 10.1596 9.7476 10.1669 9.1771
cpu_small 22.4364 11.354 16.6171 7.6828
ESL 0.4230 0.2928 0.3444 0.3060
ERA 2.802 2.7079 2.721 2.6591
LEV 0.4954 0.4880 0.4922 0.5003
pol 15.0157 13.923 16.1196 15.5640
puma8NH 11.1515 10.9882 10.61 11.0955
satellite_image 0.8952 0.5294 0.7886 0.5054
pm10 0.69 0.6962 0.6901 0.5892
pollen 2.2528 2.1962 2.1997 2.4380
Abalone 4.5547 4.4766 4.3444 4.6212
Wine_Quality 0.4705 0.4384 0.3841 0.3562
11/12 best 08/12 best

11/12 equal or better

08/12 equal or better

Table 1. Comparison of XStacking and baseline performance
in regression tasks based on MSE.

% Wilcoxon signed-rank test: performance between traditional stacking and
XStacking is statistically significant (p < 0.01) in terms of accuracy across
all datasets.




~ XStacking: Explanation-Guided Stacked Ensemble Learning
=7 O Experimental study: Computational Efficiency of XStacking (RQZ)

Dataset properties Meta-learner Stacking XStacking
SVM 4,14 1012,83
D<15 | m<1700
XGBoost 7,81 947,04
SVM 608,87 3740
D>15 | m>1700
XGBoost 611,02 3250

Table 3. Comparison of the average runtime, in seconds, of the XStacking method
against the state-of-the-art stacking ensemble learning.

= SHAP-based explanations — added computational overhead.

» Trade-off: Slightly longer runtime < Ensured interpretability.



~ XStacking: Explanation-Guided Stacked Ensemble Learning
37 O Experimental study: Explainability and reliability of XStacking (RQ3)

% Case 1: All Base Models Have High Accuracy (IRIS Dataset)
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*When base models perform similarly well, SHAP value (svM meta-carner cepalwidth I

— Meta-learner combines insights without bias toward one model. sepallength |

0,4 0.2 0.0 0.2 0.4

*Features importance remains stable across learners. SHAP valu{oecisonresclasife]



~ XStacking: Explanation-Guided Stacked Ensemble Learning
1 W Experimental study: Explainability and reliability of XStacking (RQ3)

% Case 2: Base Models Have Very Different Accuracies (CAR Dataset)

maint —4*: P,
& Context I . g
*Base learners: DT (0.69), LR (0.79), MLP (0.99). [ SR — S PR W—

*Performance varies greatly. MLP_shap.maint e taon ._.u__:_.‘,____
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*Interpretability reflects performance-driven weighting. e e :
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SHAP value (DecisionTreeClassifier)



7 "_"-':'Conclusion & Future works

“ What we proposed

 XStacking: Enhances stacked ensemble learning
with explanation guided meta-earning.

* Integrates SHAP-based explanations directly
into stacking.

“* Why it matters

* Enables transparent & trustworthy ensemble
learning.

* Facilitates debugging and feature-level insights.

* Suitable for research & real-world applications.

% Key outcomes

* Higher accuracy than traditional stacking.

* Built-in interpretability at both base and meta-
model levels.

* Scales to diverse datasets & model families.

v

+* Future directions

* Speed up explanations’ computation for large-
scale ensembles.

* Extend to deep learning & gradient-based
attributions.
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