
Towards Efficient and Explainable Automated Machine
Learning Pipelines Design

Moncef GAROUANI

Institut de Recherche en Informatique de Toulouse
26 May 2023

Moncef Garouani

Email : mgarouani@gmail.com
Website : www.mgarouani.fr
Temporary Lecturer and Research Assistant
EILCO /ULCO University - LISIC Laboratory

Slides available at mgarouani.fr/talks → IRIT seminar

(all references are clickable links)

1/52



2/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Outline

1 Context

2 Problem Statement and the State of the art

3 Research work
Towards a Meta-learning based AutoML framework for Industrial big data
Learning abstract tasks representation
Towards interactive explainable AutoML
AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives



3/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Context

1 Context

2 Problem Statement and the State of the art

3 Research work
Towards a Meta-learning based AutoML framework for Industrial big data
Learning abstract tasks representation
Towards interactive explainable AutoML
AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives



4/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Context

Successes of Machine & Deep learning

Self-driving cars Robotic

Objects recognition 

Speech recognition 
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Context

Machine Learning solutions in the industry

Advantages : High predictive accuracy
: Data-driven, few assumptions

Challenges 8 Various ML algorithms : Which one to choose?
8 Numerous Hyperparameters (categorical, continuous, conditional)
8 Numerous metrics of performance (Acc, AUC, Recall, etc.)
8 Need high technical expertise in statistics and data science

 No ”one-size-fits-all” ML solution for advanced analytics
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Advantages : High predictive accuracy
: Data-driven, few assumptions

Challenges 8 Various ML algorithms : Which one to choose?
8 Numerous Hyperparameters (categorical, continuous, conditional)
8 Numerous metrics of performance (Acc, AUC, Recall, etc.)
8 Need high technical expertise in statistics and data science

Accuracy 

Best ML algorithm 
0.93 0.99 0.78 0.97 

Grad. Boosting DT SVM RF 

Best Manufacturing Score 0.85 0.98 0.62 0.92 

[Mazumder et al.] [Tarak et al.] CNC MTW [Thiyagu, et al.]

 No ”one-size-fits-all” ML solution for advanced analytics
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Context

Developing advanced Analytics : Goal

Make Machine Learning

Do the Crafting

Many scenarios, many 
variables, vorious needs 
Continuously changing!

Brut-force selection of ML 
methods and design parameters 

Prohibitively expensive & require 
technical expertise

Mission statement

Enabling users to efficiently apply ML!
 Develop holistic transparent AutoML
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Problem Statement and the State of the art

The algorithms selection and configuration problem

Definition : Combined Algorithms selection and Hyperparameters optimization (CASH)

Given :

• a set of algorithms A = {A(1), . . . ,A(n)}
• H(i) the hyperparameters space of A(i)i ∈ 1, . . . , n

• a set of training problem instances D divided on Dtrain and Dvalid

• a cost metric L : A(i) × Hn × D → R assessing the predictive performance of the
model induced by the algorithm A(i) with an HP configuration Hn ∈ H(i) on the
dataset D

Find : A
(i)
H∗ that minimizes or maximizes the L on D such that :

A
(i)
H∗ ∈ argmin

A(i)∈A,H∈H
L(AH ,Dtrain,Dvalidation)
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Problem Statement and the State of the art

Challenges of the algorithms selection and configuration

1 A pool of ML algorithms to be tested

2 Loop over all candidate pipelines

3 Instantiate and evaluate the ML
model based on each pipeline

4 Select the best ML model based on
the performance

6

The blackbox function is expensive to evaluate  Automate the Algorithms selection
and configuration process is important
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Challenges of the algorithms selection and configuration

1 A pool of ML algorithms to be tested

2 Loop over all candidate pipelines

3 Instantiate and evaluate the ML
model based on each pipeline

4 Select the best ML model based on
the performance

The blackbox function is expensive to be evaluated
 It is important to automate the Algorithms selection and configuration process
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Problem Statement and the State of the art

Automated Machine Learning

Definition : Automated Machine Learning (AutoML)

Automated machine learning is the process of applying ML models to real-world
problems using automation.

It automates the selection, composition and parameterization of ML models.

AutoML makes ML techniques accessible to domain scientists who are interested
in applying advanced analytic but lack the required expertise.

This can be seen as a democratization of ML.

Objectives

Automatic selection of algorithms

Automatic tuning of
hyperparameters

Solve the CASH

Benefits

Reduce the required expertise

Faster development of algorithms

Less human time

Further automation
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Problem Statement and the State of the art

AutoML as a CASH problem

AutoML

Given a training set D and a set of
algorithms A with an associated
hyperparameters space H, the
AutoML for the CASH problem is to
find the optimal algorithm and
hyperparameters space combination
(A(i) , H∗) that minimize or maximize
the coast metric L evaluated on a
validation set Dvalidation.

A
(i)
H∗ ∈ argmin

A(i)∈A,H∈H
L(AH ,Dtrain,Dvalidation)

How to search?

Grid & Random search

Bayesian optimization [AutoSklearn]

Evolutionary algorithms [TPOT]

Meta-learning (Largely unexplored)
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Problem Statement and the State of the art

Grid Search and Random Search

Both completely uninformed [Bergstra et al. (2012)]

Grid search suffers from the curse of dimensionality [Bergstra et al. (2012)]

Random search handles low intrinsic dimensionality better [Andradóttir et al. (2015)]
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Problem Statement and the State of the art

Bayesian Optimization

Autosklearn [Feurer et al. (2019, 2020)]

Start with few (random or guided)
HPs configurations

Repeat until stopping criterion
(fixed budget, convergence, etc.)

Accurate but so expensive and
can overfits easily
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Problem Statement and the State of the art

Genetic algorithms

Tree-based Pipeline Optimization Tool (TPOT) [Oslon et al. (2016)]

Start with random pipelines; best
of every generation will cross-over
or mutate

Pipelines are represented by a tree
of unlimited length and depth

Accurate but so expensive and
could generate invalid individuals

ML pipeline 1 

ML pipeline 2 

ML pipeline n 

Genetic algorithm Optimal pipeline 

n

• Crossover

• Mutation
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Problem Statement and the State of the art

Observations and main ideas

Observations

Obs 1 : We cannot afford to evaluate all configurations H ∈ H on all instances
I ∈ D

Obs 2 : We do not want to waste time on less performing Hn values

Obs 3 : We need enough empirical evidence to distinguish between well performing
(A(i) , H)

Obs 4 : Algorithms configuration can lead to over-tuning

Obs 5 : If done wrong, waste of time and compute resources

Idea

Idea 1 : Discard less performing (A,Hn) early on

Idea 2 : Transfer knowledge when optimizing on new tasks

Idea 3 : Guide the optimization process
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Problem Statement and the State of the art

Towards human-like learning to learn

Humans learn across tasks

Why? Requires less trial-and-error, less data and time

Learning is a never-ending process

!3

Humans don’t learn from scratch 

When one learn new skills, (s)he rarely, if ever, starts from scratch.

Start from skills learned earlier in related tasks.

Reuses approaches that worked well before, and focuses on what is likely worth
trying based on experience.

With every learned skill, learning new skills becomes easier, requiring fewer
examples and less trial-and-error.

In short, we learn how to learn across tasks
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Problem Statement and the State of the art

Beyond blackbox optimization

Idea : Based on the assumption “Algorithms show similar performance with the same
configuration for similar problems”  Take the best configurations from previous runs
and try them as initial design on new instances.
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Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Learning is a never-ending process

Learning  
episodes

Task
1

Learning

MMooddee
lslsModels

x,y
Task 1

Learning

MMooddee
lsls
Models

x,y
Task 2

Learning

MMoodd
eelsls

s
Models

x,y
Task 3

Which 
Model?

new tasks

x,y
Task n

Learn more effectively : less trial-and-error, less data, and less time
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Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Meta-learning

(a) Learning (b) Meta-learning

Training 

Validation 

Test 

Learning 

Learning 

   Training            Training         Training 

  Validation         Validation     Validation      

  Test       Test       Test 

     Meta        Meta           Meta 
      Training       validation   Test

Learning 

Meta-learning 

Source : OBOE [Yang et al., 2019]

We can use meta-learning to generalize across datasets and models by :

Learning which hyperparameters are really important

Learning which hyperparameters values should be tried first

Learning which architectures will most likely work
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Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Meta-learning in practice

We need a meta-data repository of relevant prior machine learning experiments to
transfer prior knowledge across tasks.

Task 1 Task 2 Task 3

ModelsModelsModels

performance performance performance

LearningLearningLearners
LearningLearningLearners

LearningLearningLearners

ModelsModelsModels
ModelsModelsModels } meta-data

!7

Meta-learning

New Task

performance

ModelsModelsModels

meta-learner

base-learner

additional 

experiments

Meta-learner learns a (base-)learning algorithm, based on meta-data
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Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Meta-data

Task
1

Learning

MMooddee
lslsModels

x,y
Task 1

Learning

MMooddee
lsls
Models

x,y
Task j…

Performance Performance

Meta-learner

MMooddee
lsls
Models

x,y
New Task

Performance

A

H

L

m  

m : Meta-features 
A : Learning algorithms 
H : Models Hyperparameters 
L : Performance estimate of A(H) on the Task j 

Notation reminder 

But how can we featurize a task (dataset)?
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Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Meta-learning
How to measure tasks similarity?

Tasks similarity

Statistical meta-features that describe tabular datasets [Vanschoren et al. (2018)]

Task2Vec : task embedding for image data [Achille et al. (2019)]

Optimal transport : similarity measure based on comparing probability
distributions [Alvarez-Meliset al. (2020)]

Metadata embedding based on textual dataset description [Drori et al. (2019)]

Dataset2Vec : compares batches of datasets [Jooma et al. (2020)]

How similar 
are they?

Dataset A Dataset B
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Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Conceptual description

Learning phase: Constructing the knowledge base and training the Meta-Model
-----

1 

Meta-Model 
1 

1 

� 

1 

1 
1 

l
1 

1 

1 

1 

.. @ 
1
1

1 
Suggestion 

engine
 1
1

1 
L ____________________________ J 

Inferring phase: Recommending optimal pipelines for the new Dataset 

New Dataset 

Meta-Features 
extraction 

Exploring related datasets 
& 

pipeline candidates 

Ranking pipelines list according  
to the performance criterion

Optimal pipeline 

@ 

.,_ 

·;::=
GI ftl - 0 
'ï: a, 
0 a: 

GI • 
o�
CU. 
.. .

E o ... 0 
0� 
't: œ 
GI G1 o.. -

Datasets

Machine learning experiments  various 
algorithms and configurations

Calculate Meta-features
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Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

AMLBID

400 CASH scenarios from I4.0 AI domains

41 meta-features

08 target algorithms and their configuration space

+1000 Hyperparameters configuration

4.000.000 evaluated pipelines in the KB

Datasets

400 real-world classification datasets

Mix of binary (71%) and multiclass (29%)

Process, Machine & Supply chain tasks

Classes Attributes Instances

Min 2 3 185
Max 18 71 494051



26/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

AMLBID

400 CASH scenarios from I4.0 AI domains

41 meta-features

08 target algorithms and their configuration space

+1000 Hyperparameters configuration

4.000.000 evaluated pipelines in the KB

Meta-features

Simple, Statistical & Information Theoretic their purpose is to measure the
complexity of the underlying problem.

Model based measures are calculated by inducing a decision tree model on a dataset
to get information about the hidden structures of the data.

Landmarking based measures that characterize the predictive problems when basic
ML algorithms are performed on them.

Complexity based measures that analyze the complexity of a problem considering the
overlap in the attributes values, the separability of the classes, and
topological properties.
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Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

AMLBID

400 CASH scenarios from I4.0 AI domains

41 meta-features

08 target algorithms and their configuration space

+1000 Hyperparameters configuration

4.000.000 evaluated pipelines in the KB

ML algorithms

Support Vector Machines (C, Kernel, coef0, gamma, degree)

Logistic Regression (C, penalty, fit intercept)

Decision Tree (max features, min samples leaf, min samples split, criterion)

Random Forest (bootstrap, max features, min samples leaf / split, split criterion)

Extra Trees (bootstrap, max features, min samples leaf / split, split criterion)

Gradient Boosting (learning rate, n estimators, depth, min samples leaf / split)

AdaBoost (algorithm, n estimators, learning rate, max depth)

Stochastic Gradient Descent (loss, penalty, learning rate, l1 ratio, eta0, Power t)
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Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

AMLBID

400 CASH scenarios from I4.0 AI domains

41 meta-features

08 target algorithms and their configuration space

+1000 Hyperparameters configuration

4.000.000 evaluated pipelines in the KB

Pipelines generation

1000 HPs configurations for every
algorithm A over each dataset D
8000 pipelines for each dataset

10 x 5-fold stratified cross-validation
strategy
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Prototypical implementation

AMLBID

400 CASH scenarios from I4.0 AI domains

41 meta-features

08 target algorithms and their configuration space

+1000 Hyperparameters configuration

4.000.000 evaluated pipelines in the KB

Pipelines generation

1000 HPs configurations for every
algorithm A over each dataset D
8000 pipelines for each dataset

10 x 5-fold stratified cross-validation
strategy

Knowledge base

KB = {(m1,A
(1)

H1 ), . . . , (m400,A
(n)

H1000 )}

8 
algorithms 

1000

HPs config. 

400 

datasets 

4.000.000  

evaluated pipelines 

KB
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Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

The Meta-model

Recommend the top-performing classification configurations for a combination of an
unseen dataset and a classification evaluation measure

which? Random Forest
k-Nearest Neighbor (kNN)

Why? of classification type
sensitive
can handle missing values
extensible
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Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

The Meta-model

Recommend the top-performing classification configurations for a combination of an
unseen dataset and a classification evaluation measure

which? Random Forest
k-Nearest Neighbor (kNN) 4

Why? of classification type
sensitive
can handle missing values
extensible
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Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Empirical study
The experimental configuration

Benchmark datasets

30 datasets (binary and multiclass classification)
OpenML AutoML benchmark [Feurer et al. (2020)]
State-of-the-art papers [Garouani et al. (2022b)]

Baseline AutoML tools

TPOT
Default settings (generation and evaluation of 100 pipelines for each dataset)

Auto-sklearn
Auto-sklearn(V) : Vanilla version (Bayesian optimization)
Auto-sklearn(E) : Auto-sklearn 2.0 (Ensemble learning)
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Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Empirical study
Experimental results : The recommendations performance

Table 1: Comparative performance analysis of AMLBID and the baseline AutoML tools.

Dataset AMLBID TPOT Auto-sklearn(V) Auto-sklearn(E) Original paper result

[137] 0.9374 0.9120 0.8215 0.9283 0.8500
[138] 0.9706 0.9517 0.9632 0.9356 0.9500
[139] 0.9941 0.9907 0.9782 0.9900 0.9895
[141] 0.9205 0.9991 0.9357 0.6863 0.9984
[142] 0.8971 0.6711 0.9080 0.9723 0.9677
[143] 0.9706 0.7767 0.6780 0.9843 0.9278
[144] 0.8967 0.8899 0.6783 0.7952 0.8840
[145] 0.8748 0.7826 0.6702 0.7727 0.8659
Wafer-ds 0.8571 0.7312 0.8033 0.8953 -
vehicle 0.8880 0.8415 0.9027 0.6591 -
Cnae-9 0.9671 0.8803 0.7922 0.8365 -
Gas Sens 0.9739 0.9843 0.9256 0.9468 -
Covertype 0.8344 0.7307 0.7890 0.6521 -
Kc1 0.8793 0.7097 0.7697 0.8552 -

.

.

.
. . .

. . .
. . .

. . .
.
.
.

jannis 0.6719 0.7229 0.6171 0.6845 -
MiniBooNE 0.9645 0.9423 0.8343 0.8903 -
Higgs 0.713 0.726 0.7135 0.729 -
Credi-g 0.7921 0.7188 0.5739 0.6121 -
kr-vs-kp 0.9976 0.9209 0.6532 0.7593 -
car 0.9754 0.9999 0.8549 0.9462 -
albert 0.8759 0.8005 0.8288 0.7981 -
airlines 0.6982 0.6758 0.7094 0.5927 -

Best performance 19 6 2 3 -
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Covertype 0.8344 0.7307 0.7890 0.6521 -
Kc1 0.8793 0.7097 0.7697 0.8552 -

.

.

.
. . .

. . .
. . .

. . .
.
.
.

jannis 0.6719 0.7229 0.6171 0.6845 -
MiniBooNE 0.9645 0.9423 0.8343 0.8903 -
Higgs 0.713 0.726 0.7135 0.729 -
Credi-g 0.7921 0.7188 0.5739 0.6121 -
kr-vs-kp 0.9976 0.9209 0.6532 0.7593 -
car 0.9754 0.9999 0.8549 0.9462 -
albert 0.8759 0.8005 0.8288 0.7981 -
airlines 0.6982 0.6758 0.7094 0.5927 -

Best performance 19 6 2 3 -
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Table 1: Comparative performance analysis of AMLBID and the baseline AutoML tools.

Dataset AMLBID TPOT Auto-sklearn(V) Auto-sklearn(E) Original paper result

[137] 0.9374 0.9120 0.8215 0.9283 0.8500 (8.74)N
[138] 0.9706 0.9517 0.9632 0.9356 0.9500 (2.06)N
[139] 0.9941 0.9907 0.9782 0.9900 0.9895 (0.46)N
[141] 0.9205 0.9991 0.9357 0.6863 0.9984 (0.07)N
[142] 0.8971 0.6711 0.9080 0.9723 0.9677 (0.46)N
[143] 0.9706 0.7767 0.6780 0.9843 0.9278 (4.28)N
[144] 0.8967 0.8899 0.6783 0.7952 0.8840 (1.27)N
[145] 0.8748 0.7826 0.6702 0.7727 0.8659 (0.89)N
Wafer-ds 0.8571 0.7312 0.8033 0.8953 -
vehicle 0.8880 0.8415 0.9027 0.6591 -
Cnae-9 0.9671 0.8803 0.7922 0.8365 -
Gas Sens 0.9739 0.9843 0.9256 0.9468 -
Covertype 0.8344 0.7307 0.7890 0.6521 -
Kc1 0.8793 0.7097 0.7697 0.8552 -

.

.

.
. . .

. . .
. . .

. . .
.
.
.

jannis 0.6719 0.7229 0.6171 0.6845 -
MiniBooNE 0.9645 0.9423 0.8343 0.8903 -
Higgs 0.713 0.726 0.7135 0.729 -
Credi-g 0.7921 0.7188 0.5739 0.6121 -
kr-vs-kp 0.9976 0.9209 0.6532 0.7593 -
car 0.9754 0.9999 0.8549 0.9462 -
albert 0.8759 0.8005 0.8288 0.7981 -
airlines 0.6982 0.6758 0.7094 0.5927 -

Best performance 19 6 2 3 -
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Table 2: The run-time of the AMLBID, Autosklearn and TPOT tools on the benchmark datasets.

Dataset Dataset size AMLBID Autosklearn TPOT

[137] 959 00:00:05 01:23:47 00:08:14
[138] 2000 00:00:12 01:49:21 00:13:57
[139] 61000 00:05:29 04:19:05 03:42:09
[141] 274627 00:11:43 08:19:37 06:09:51
[142] 5000 00:01:27 02:31:07 01:38:36
[143] 1567 00:00:53 01:33:45 00:19:47
[144] 5388 00:00:57 01:56:50 00:55:51
[145] 1567 00:00:33 00:58:50 00:21:12
Wafer-ds 7306 00:02:17 03:44:26 01:42:21
vehicle 8463 00:02:28 02:12:40 01:45:40
Cnae-9 63260 00:05:47 04:07:39 03:24:52
Gas Sens 4188 00:01:14 02:47:20 00:42:36
Covertype 25524 00:03:04 01:28:31 01:36:14
Kc1 2108 00:00:38 04:19:26 04:51:02

.

.

.
. . .

. . .
. . .

. . .

jannis 8641 00:01:41 02:31:07 01:41:51
MiniBooNE 52147 00:04:23 03:59:56 02:11:01
Higgs 110000 00:06:16 07:37:55 05:43:24
Credi-g 30000 00:04:39 02:03:34 05:33:03
kr-vs-kp 3196 00:00:54 01:17:19 00:22:44
car 1728 00:00:38 01:38:30 00:40:07
albert 43824 00:06:27 04:09:17 03:01:03
airlines 5473 00:01:40 02:18:27 00:57:52
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Appropriate data characterization is crucial for the meta-learning

Proper form of data characterization can guide the process of
learning algorithms selection and configuration
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Data characterization

Hand-designed meta-features

Simple, Statistical & Info. theoretic

Landmarking

Model-based

Data Complexity

But?

What criteria should we invoke to
include or discard a family of
meta-features?

Datasets may share identical statistical properties
but noticeably they have different data distributions.

negatively sloping lines (Figure 7B). The resulting dataset 
(Figure 7C) has the same positive correlation as the initial 
dataset when looked at as a whole, while the individual 
groups each have a strong negative correlation. 

 
Figure 7. Demonstration of Simpson's Paradox. Both 
datasets (A and C) have the same overall Pearson's 
correlation of +0.81, however after coercing the data 
towards the pattern of sloping lines (B), each subset of data 
in (C) has an individually negative correlation. 

Example 5: Cloned Dataset with Similar Appearance 
As discussed by Govindaraju and Haslett [8] another use for 
datasets with the same statistical properties is the creation of 
“cloned” datasets to anonymize sensitive data [6]. In this 
case, it is important that individual data points are changed 
while the overall structure of the data remains similar.  This 
can be accomplished by performing a Kolmogorov-Smirnov 
test within the ISERROROK function for both x and y. By only 
accepting solutions where both the x and y K-S statistic is 
<0.05 we ensure that the result will have a similar shape to 
the original (Figure 8). This approach has the benefit of 
maintaining the x/y means and correlation as accomplished 
in previous work [8], and additionally the x/y standard 
deviations as well. This could also be useful for “graphical 
inference” [12] to create a collection of variant plots 
following the same null hypothesis. 

 
Figure 8. Example of creating a “mirror” dataset as in [8]. 

Example 6: 1D Boxplots 
To demonstrate the applicability of our approach to non 2D-
scatterplot data, this example uses a 1D distribution of data 
as represented by a boxplot. The most common variety of 
boxplot, the “Tukey Boxplot”, presents the 1st quartile, 
median, and 3rd quartile values on the “box”, with the 
“whiskers” showing the location of the furthest datapoints 
within 1.5 interquartile ranges (IQR) from the 1st and 3rd 
quartiles. Starting with the data in a normal distribution 
(Figure 9A) and perturbing the data to the left (B), right (C), 

edges (D, E), and arbitrary points along the range (F) while 
ensuring that the boxplot statistics remain constant produces 
the results shown in Figure 9.  

 
Figure 9. Six data distributions, each with the same 1st 
quartile, median, and 3rd quartile values, as well as equal 
locations for points 1.5 IQR from the 1st and 3rd quartiles. 
Each dataset produces an identical boxplot. 

LIMITATIONS AND FUTURE WORK 
When the source dataset and the target shape are vastly 
different, the produced output might not be desirable. An 
example is show Figure 10, where the data set from Figure 
7A is coerced into a star (Figure 10). This problem can be 
mitigated by coercing the data towards “simpler” patterns 
with more coverage of the coordinate space – such as lines 
spanning the grid, or pre-scaling and positioning the target 
shape to better align with the initial dataset. 

 
Figure 10. Undesirable outcome (C) when coercing a 
strongly positively correlated dataset (A) into a star (B). 

The currently implemented fitness function looks only at the 
position of individual points in relation to the target shape, 
which can result in “clumping” of data points and sparse 
areas on the target shape. A future improvement could 
consider an additional goal to “separate” the points to 
encourage better coverage of the target shape in the output. 

The parameters chosen for the algorithm (95% success rate, 
quadratic cooling scheme, start/end temperatures, etc.) were 
found to work well, but should not be considered “optimal”. 
Such optimization is left as future work. 

The code and datasets presented in this work are available at 
www.autodeskresearch.com/publications/samestats. 

CONCLUSION 
We presented a technique for creating visually dissimilar 
datasets which are equal over a range of statistical properties. 
The outputs from our method can be used to demonstrate the 
importance of visualizing your data, and may serve as a 
starting point for new data anonymization techniques. 

A C

B

“Cloned” DataOriginal Data Comparison

−10 −5 0 5 10
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A B C

All about Data CHI 2017, May 6–11, 2017, Denver, CO, USA
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[Matejka et al. (2017)]
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Graph-based dataset Representation

Represents datasets as graphs and
then extracts their latent
representation.

Vertices represent the dataset
instances

Edges indicate the existence of a
sufficiently high co-occurrence
score among them.

Algorithm 1 Generating graphical representations of dataset
1: procedure GenerateGraph(dataset D)
2: decisionTrees ← RandomForest(D)
3: leaves ← decisionTrees .GetLeaves()
4: leaves ← RemoveLowCoOccurrences(leaves)
5: E← ∅
6: V← D.GetInstances()
7: for each (A, B) in V do
8: CoScore ← leaves .GetCoOcurrence(A, B)
9: E ← E∪(A, B, CoScore)
10: return (V, E)

Inst. X1 Forest

Inst. X2 Forest

… …

… …

Inst. 
X1

Inst. 
X2

The generated graph

2

Classification Generation

Figure 3: Representation step. Inst. X1 and Inst. X2 fall in
the same leaf in two trees, and therefore the co-occurrence
score of them is two.

4.2.3 The modeling step: ranking meta-learning model. To train
a ranking classifier capable of utilizing the meta-features described
above, we produce a large labeled training set using the following
process:

1) Given a set of datasets D and a set of learning algorithms L,
we evaluate all combinations of d ∈ D and l ∈ L. We denote the
result of this evaluation as Rl,d .

2) For each combination of d ∈ D and l ∈ L, we create a set of
meta-features that consists of the following: a)Md – the set of meta-
features generated in the extraction step (described in Subsection
4.2.2); b) Ml – a single discrete feature describing l ; and c) Rl,d –
the results of the evaluation of l on d .

3) We train the XGBoost algorithm [6] on the joint set {Md ∪
Ml ,Rl,d } where we aim to predict the true ranking of algorithm l
based on its performance Rl,d . We chose XGBoost as our ranking
algorithm, since previous work [4] has shown that it well suited to
this.
The result of this step is a trained meta-ranking model, capable of
ranking every l ∈ L for previously unseen datasets. The modeling
step is presented in Algorithm 2.

4.3 The test phase
In this phase, we attempt to produce a list of learning algorithms,
ranked by their predicted performance on a previously unseen
dataset dnew . This process is described in Figure 4 and Algorithm
3. The steps of this phase are as follows:

Algorithm 2 Ranking meta-learning model generation
1: procedure GenerateModel(datasets D, algorithms L)
2: MetaFeatures← ∅
3: for each d in D do
4: Md ←MetaFeatureExtraction(d) ▷ See Section 4.2.2
5: for each l in L do
6: Rl,d ← EvaluatePerformance(d ,l )
7: Ml ← DiscreteFeatureExtraction(l )
8: f eatures ←(Md ∪Ml , Rl,d )
9: MetaFeatures ← (f eatures ∪MetaFeatures)
10: RankinдModel ← XGBoost (MetaFeatures)
11: return RankingModel

New
Dataset

New
Dataset

Classification Random 
Forest

Generation 
Graphical Representation 

Best Algorithm
1

2

3

4

Extraction
Graphical Meta-Features 

Ranking
Meta-Learnnig Model

+ Task

+ Evaluation Measure

Figure 4: AutoGRD testing flow

1) We generate Mdnew the set of meta-features described in
Section 4.2.2 for dnew .

2) For each l ∈ L, we generate Ml and concatenate it to a copy
ofMdnew .

3) Once Mdnew ∪ Ml has been generated for every l ∈ L, we
provide all meta-feature vectors to the trained XGBoost model and
use it to produce Rl,dnew – a ranked list of all algorithms, ordered
by their predicted performance.

5 EVALUATION
In our evaluation, we examine our method as a meta-learning ap-
proach, in terms of its accuracy in the task of recommending the
appropriate algorithm for a problem, and compare the advantages
of our method in this respect to those of other methods.

We evaluate AutoGRD for two types of tasks: classification and
regression. In our evaluation we used 150 and 100 datasets for the
classification and regression tasks, respectively. All datasets are

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China
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[Cohen-Shapira et al. (2019)]

This approach suffers from a computational
complexity of O(V 4) where V is the number of
vertices in the analyzed graph.
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The AeKNN meta-model with built in data characterization
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Figure 4.3: Overview of proposed AeKNN-based meta-model.

Algorithm: AeKNN algorithm’s pseudo-code.
Input : Train Data, Test Data, KB . KB is the constructed knowledge base
Output : P< P1, P2, P3, . . . , Pn > . Suggested pipelines
Learning phase :

1: MetaData← MetaFeaturesExtractor(TrainData)
2: AE← Autoencoder(MetaData)
3: EncoderModel← FeedForwardAEModel(AE)
4: LatentMetaFeatures← EncoderModel(TrainData)
5: AeKNN ← KNN(LatentMetaFeatures, KB)

Inferring phase :
6: MetaFeatures← MetaFeaturesExtractor(TestData)
7: LatentMetaFeatures← EncoderModel(MetaFeatures)
8: OptimalP iplines← AeKNN(LatentMetaFeatures, KB)

phase (encoder model). It produces a new dataset characterization (latent meta-
features), which is more compact representative (line 7) of data. In fact, this new
set of features is used by the AeKNN meta-model to recommend the optimal
pipeline (s) for the given problem (test dataset) (line 8). An illustrative example
of this process is shown in Figure 4.4.

Work in progress as of March 7, 2022
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AekNN foundations
Autoencoders

Encoder

Z = E(X ) that encodes the high dimensional
input data X = {x1, x2, .., xn} into a low
dimensional hidden representation
Z = {z1, z2, zm} by an activation function f

Decoder

decoding function X ′ = D(Z) that
produces a reconstruction of the inputs
X ′ = {x ′1, x ′2, . . . , x ′n}, while minimizing
the reconstruction error L(X ,X ′).

L(X ,X ′) = −
∑n

i=1(xi log x ′i ) + (1− xi ) (xi log (1− x ′i ))
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Experimental study
AeKNN architectures analysis

AeKNN is characterized by the li
n parameter that establishes the architecture of the

network. This parameter allows the selection of different architectures in terms of
depth (number of layers) and number of neurons per layer.

Table 3: Experimental configurations of AeKNN.

Model Number of
Number of neurons per layer

Architecture li
n

hidden layers L 1 L 2 Latent layer L 4 L 5

AeKNN1 1 - - 32 - - (32)
AeKNN2 1 - - 16 - - (16)
AeKNN3 1 - - 8 - - (8)
AeKNN4 3 32 - 16 - 32 (32,16,32)
AeKNN5 5 32 16 8 16 32 (32,16,8,16,32)
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Table 4: Accuracy classification results of the recommended pipelines for the considered AeKNN
architectures.

Dataset
AeKNN

(32) (16) (8) (32,16,32) (32,16,8,16,32)

APSFailure 0.9921 0.9734 0.86475 0.9033 0.8325
Higgs 0.7283 0.6911 0.4872 0.6398 0.5316
CustSat 0.8155 0.7826 0.5318 0.8559 0.6943
car 0.9999 0.9808 0.7049 0.9203 0.8277
kr-vs-kp 0.9976 0.8130 0.6532 0.7330 0.7291
airlines 0.6982 0.6833 0.5627 0.7167 0.4334
vehicle 0.8880 0.8934 0.3591 0.8004 0.4098
MiniBooNE 0.9645 0.9217 0.8143 0.85 0.7436
jannis 0.7229 0.6843 0.6371 0.6911 0.6608
nomao 0.9708 0.9719 0.5395 0.6994 0.4659
Credi-g 0.7921 0.6502 0.5121 0.3871 0.4768
Kc1 0.8793 0.8754 0.3597 0.7488 0.5691
Cnae-9 0.9671 0.8923 0.5622 0.5208 0.6049
albert 0.8759 0.8131 0.6981 0.8439 0.9053
Numerai28.6 0.5207 0.4530 0.3029 0.4760 0.2810
segment 0.9735 0.9622 0.8837 0.9508 0.5791
Covertype 0.8344 0.7189 0.6521 0.6305 0.4620
KDDCup 0.9740 0.8514 0.8034 0.8821 0.8572
shuttle 0.9362 0.9997 0.6429 0.8576 0.6744
Gas Sens-uci 0.9843 0.9755 0.7256 0.9667 0.7032

Best performance 14 3 0 2 1
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Table 4: F1-Score classification results of the recommended pipelines for the considered AeKNN
architectures.

Dataset
AeKNN

(32) (16) (8) (32,16,32) (32,16,8,16,32)

APSFailure 0.9823 0.7553 0.9875 0.7573 0.9055
Higgs 0.8743 0.5451 0.5602 0.4938 0.5316
CustSat 0.9250 0.6366 0.4953 0.8194 0.5483
car 0.9635 0.9874 0.8144 0.7613 0.6817
kr-vs-kp 0.9246 0.7035 0.6532 0.5870 0.8751
airlines 0.5887 0.7928 0.5992 0.5707 0.3604
vehicle 0.8515 0.8204 0.2131 0.9099 0.3733
MiniBooNE 0.9715 0.9871 0.8873 0.7405 0.8531
jannis 0.7229 0.5748 0.8068 0.6911 0.6006
nomao 0.9343 0.9213 0.5395 0.8454 0.4294
Credi-g 0.9381 0.5772 0.5661 0.4141 0.5863
Kc1 0.9321 0.8389 0.9523 0.8583 0.4596
Cnae-9 0.8962 0.8741 0.6352 0.5938 0.7509
albert 0.8394 0.7036 0.6251 0.8074 0.9783
Numerai28.6 0.3747 0.5260 0.3029 0.4395 0.3540
segment 0.9130 0.8830 0.8837 0.7139 0.5426
Covertype 0.6886 0.6824 0.7249 0.4845 0.4620
KDDCup 0.9571 0.9974 0.7669 0.8386 0.7112
shuttle 0.9653 0.8537 0.4969 0.8306 0.7109
Gas Sens-uci 0.6161 0.8660 0.9667 0.7667 0.8492

Best performance 8 5 5 1 1
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Table 4: AUC classification results of the recommended pipelines for the considered AeKNN
architectures.

Dataset
AeKNN

(32) (16) (8) (32,16,32) (32,16,8,16,32)

APSFailure 0.9191 0.9763 0.8648 0.8639 0.7230
Higgs 0.7283 0.8371 0.3412 0.5668 0.5316
CustSat 0.9654 0.6731 0.6413 0.8155 0.7673
car 0.9608 0.9269 0.9873 0.5298 0.6817
kr-vs-kp 0.7765 0.9103 0.6167 0.8790 0.5831
airlines 0.8627 0.5373 0.6357 0.8442 0.5794
vehicle 0.9610 0.8569 0.3956 0.5464 0.5558
MiniBooNE 0.8550 0.9947 0.7873 0.7230 0.5976
jannis 0.7338 0.7229 0.4911 0.6911 0.5383
nomao 0.8594 0.8423 0.8978 0.5899 0.6119
Credi-g 0.9381 0.7232 0.5121 0.4601 0.3308
Kc1 0.7333 0.9119 0.3962 0.6028 0.6421
Cnae-9 0.8941 0.8433 0.4162 0.5938 0.4954
albert 0.9124 0.9226 0.6616 0.7344 0.7593
Numerai28.6 0.6302 0.5435 0.2664 0.3665 0.2080
segment 0.8900 0.8527 0.6548 0.4362 0.4331
Covertype 0.7979 0.6459 0.7981 0.6670 0.4620
KDDCup 0.9876 0.7419 0.9408 0.6587 0.7477
shuttle 0.9727 0.9267 0.7159 0.9306 0.7839
Gas Sens-uci 0.8748 0.8295 0.7986 0.5572 0.7762

Best performance 11 6 3 0 0
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The AeKNN meta-model
AeKNN architectures analysis

It is considered that li
n = (32) is the best among the considered architectures with a

reconstruction error standard deviation of 0.020025
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The AeKNN meta-model
Results of the algorithms selection process

Table 5: Results of RF, XGB, KNN, and AeKNN meta-models for
recommending optimal pipelines for test data.

Dataset
Accuracy

AeKNN KNN XGB RF

APSFailure 0.9921 (0.11)N 0.9910 0.9673 0.8950
Higgs 0.7283 (1.53)N 0.7130 0.6801 0.6072
CustSat 0.8155 (4.04)H 0.8559 0.8715 0.7382
car 0.9999 (2.45)N 0.9754 0.9462 0.8549
kr-vs-kp 0.9985 (0.09)N 0.9976 0.7593 0.6532
airlines 0.7021 (0.39)N 0.6982 0.7094 0.5927
vehicle 0.8952 (0.72)N 0.8880 0.9027 0.6591
MiniBooNE 0.9730 (0.85)N 0.9645 0.8903 0.8343
jannis 0.7229 (5.10)N 0.6719 0.6845 0.6171
nomao 0.9884 (1.76)N 0.9708 0.7987 0.6995
Credi-g 0.8037 (1.16)N 0.7921 0.5739 0.6121
Kc1 0.8905 (1.12)N 0.8793 0.7697 0.7097
Cnae-9 0.9800 (1.29)N 0.9671 0.8365 0.7922
albert 0.8790 (0.31)N 0.8759 0.8288 0.7981
Numerai28.6 0.5591 (3.84)N 0.5207 0.4836 0.4229
segment 0.9867 (1.32)N 0.9735 0.9542 0.9337
Covertype 0.8637 (2.93)N 0.8344 0.7890 0.6521
KDDCup 0.9781 (0.41)N 0.9740 0.9331 0.8934
shuttle 0.9362 (2.87)H 0.9649 0.9649 0.8429
Gas Sens-uci 0.9843 (1.04)N 0.9739 0.9468 0.9256
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The AeKNN meta-model
Results of latent meta-features extraction
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Results of latent meta-features extraction
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3 Research work
Towards a Meta-learning based AutoML framework for Industrial big data
Learning abstract tasks representation
Towards interactive explainable AutoML
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Towards interactive explainable AutoML

AutoML Process

Evaluate Performance “Guess” new 
ML Settings Optimized ML-Pipeline 

 

Pre-
Processing 

Normalization, 
Feature Selection, 
Feature Reduction, 
…. 

Predictive 
Model 

𝑨𝑨𝑯𝑯∗
(𝒊𝒊)

Post- 
Processing 

Train ML Model 

 
AutoML 

Loop 

𝓛𝓛(𝑨𝑨𝑯𝑯,𝑫𝑫𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑫𝑫𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗) 

𝑨𝑨𝑯𝑯∗
(𝒊𝒊) ∈ argmin

 𝑨𝑨(𝒊𝒊)∈𝓐𝓐,𝑯𝑯∈𝓗𝓗
𝓛𝓛(𝑨𝑨𝑯𝑯,𝑫𝑫𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑫𝑫𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗

𝑨𝑨𝑯𝑯∗
(𝒊𝒊)

A : Algorithms space

H : Hyperparameters space 
L :   Loss function

Notation reminder

Fully automated ML design can also receive pushback

Did the AutoML run long enough?

Did the AutoML miss some suitable models?

Did the AutoML sufficiently explore the search space?

Did the recommended configuration over or under fit?

How to verify results?



45/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards interactive explainable AutoML

Humans and AutoML

Who is using AutoML?

Users without any deep expertise in ML ML experts & researchers, data scientists

[Bouthillier et al. (2020)] showed that
authors of NeurIPS and ICLR papers :

often optimize their pipelines
hyperparameters (> 75%)

often do it manually and don’t use
AutoML tools

[Crisan et al. (2021)] interviewed data
scientists and concluded :

experts don’t necessarily trust AutoML

visualization of results and interaction
with processes can help to increase the
acceptance of AutoML
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Towards Interactive eXplainable AutoML (IXAutoML)
What we are aiming for?

An ideal XAI system should be flexible enough to adapt to the AutoML output (model
and data agnostic).

Interpretability

How a prediction is
made by the model

Explainability

Why can we learn
from the model

Trustworthiness

How trustworthy is
the model’s prediction
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Towards Interactive eXplainable AutoML (IXAutoML)

Pipelines recommendation (AMLBID) 

Interactive dashboard generation Data input 

Reporting & Trust building 

Dataset 

Tasks 

AMLExplainer 

XAI 
Input 

Explanations 
generation 

XAI 
Output 

Explanations 

Improvement 

(Visualisation, plots..) 

(ANOVA analysis) 

Recommendation properties 

Model summary & Classification stats. 

Features importance & dependence 

What-if-analysis & Interaction 
 

Decision path 

Recommendation refinement 

R
ef

in
em

en
t 

U
nd

er
st

an
di

ng
 

D
ia

gn
os

is
 

AutoML 
Input 

AutoML 
Output 

Pipeline1 

Pipeline2 

Pipeline3 (2) (1) 

Properties
(1) Search space exploration
(2) Ranked recommendation
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Demonstration
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AMLBID : a self-explainable AutoML software package

AMLBID : Democratization of explainable machine learning

It is open-source (MIT) and trivial to use.

Downloaded more than 17.753 times on PyPI in its first year.

Multiple industrial requests.

1 import numpy as np

2 import pandas as pd

3 from sklearn.tree import DecisionTreeClassifier

4 from sklearn.metrics import classification_report

5 from sklearn.model_selection import train_test_split

6

7 data = pd.read_csv("Dataset.csv")

8

9 X = data.drop(’class ’, axis =1)

10 Y = data[’class ’]

11

12 X_train , X_test , Y_train , Y_test = train_test_split(X, Y,

test_size =0.3, random_state =42)

13

14 model= DecisionTreeClassifier(criterion=’entropy ’,

15 max_features =0.5672564 ,

16 min_samples_leaf =5,

17 min_samples_split =20)

18

19 model.fit(X_train , Y_train)

20

21 Y_pred = model.predict(X_test)

22 score = model.score(X_test , Y_test)

23

24 print(classification_report(Y_test , Y_pred))

25 print(’ Pipeline test accuracy: %.3f’ % score)

Listing 2: Generated python file.

3.2. Recommendation Explainer module

1 from AMLBID.recommender import AMLBID_Recommender

2 from AMLBID.explainer import AMLBID_Explainer

3

4 model ,config=AMLBID_Recommender.recommend(Data , metric , mode)

5 model.fit(X_train , Y_train)

6

7 Explainer = AMLBID_Explainer.explain(model , config , Data)

8 Explainer.dash()

Listing 3: Illustrative code example of recommendation explainer module.

4. Impact

In practice, the ML modeling process is a highly iterative exploratory
process. In particular, there is no one-size-fits-all model solution, i.e, there
does not exist a single model or algorithm which can be used to achieve the
highest accuracy for all data set varieties in a certain application domain.

8
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Multiple industrial requests.
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Perspectives

Expand AMLBID

Support the algorithms of :
Regression
Deep learning
Distributed ML (Spark ML)

Cover the tasks of :
Data pre-processing
Features engineering
Post-processing analysis

Enrich the Meta-KB from collaborative ML platforms (Kaggle, OpenML, etc.)

Explore the inclusion of AutoXAI in the AMLexplainer explanatory artefact

Explore the use of the constructed knowledge base for further guidance and
automation of ML applications
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