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Context

Problem Statement and the State of the art

Research work
m Towards a Meta-learning based AutoML framework for Industrial big data
m Learning abstract tasks representation
m Towards interactive explainable AutoML
m AMLBID : a self-explainable AutoML software package

Conclusion & perspectives
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Successes of Machine & Deep learning

Self-driving cars Robotic

How can \ help you?

Objects recognition

Speech recognition
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Machine Learning solutions in the industry

Advantages

Challenges

+ High predictive accuracy
% Data-driven, few assumptions

X Various ML algorithms: Which one to choose?

X Numerous Hyperparameters (categorical, continuous, conditional)
X Numerous metrics of performance (Acc, AUC, Recall, etc.)

X Need high technical expertise in statistics and data science
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Machine Learning solutions in the industry

Advantages % High predictive accuracy
% Data-driven, few assumptions

Challenges X Various ML algorithms: Which one to choose?
X Numerous Hyperparameters (categorical, continuous, conditional)
X Numerous metrics of performance (Acc, AUC, Recall, etc.)
X Need high technical expertise in statistics and data science

Accuracy
5 0.93 0.99 0.78 0.97
Best ML algorithm
Grad. Boosting DT SVM RF
Best Manufacturing Score 0.85 0.98 0.62 0.92

~> No " one-size-fits-all” ML solution for advanced analytics
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Developing advanced Analytics: Goal

Make Machine Learning

Prohibitively expensive & require Do the Crafting

. fref]
Continuously changing! el e e
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Developing advanced Analytics: Goal

Make Machine Learning

Prohibitively expensive & require Do the Crafting

. fref]
Continuously changing! el e e

Mission statement

Enabling users to efficiently apply ML!
~> Develop holistic transparent AutoML
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Problem Statement and the State of the art
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L—Problem Statement and the State of the art

The algorithms selection and configuration problem

Definition : Combined Algorithms selection and Hyperparameters optimization (CASH)

Given :
e a set of algorithms A = {A®) ... A}
o H() the hyperparameters space of A)j € 1,...,n
e a set of training problem instances D divided on Dy, and D, g

e a cost metric £ : AW) x H, x D — R assessing the predictive performance of the
model induced by the algorithm A() with an HP configuration H, € () on the
dataset D

Find: A%)* that minimizes or maximizes the £ on D such that:

A,E-I{l € argmin £(AH: Dtrain, Dva/idation)
AN eAHEH
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L Problem Statement and the State of the art

Challenges of the algorithms selection and configuration

@ A pool of ML algorithms to be tested
@ Loop over all candidate pipelines

@ Instantiate and evaluate the ML
model based on each pipeline

@ Select the best ML model based on
the performance

Input data

Random Forest

Nearest Neighbors

Neural Net

RBF SVM
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L Problem Statement and the State of the art

Challenges of the algorithms selection and configuration

Try a
|
@ A pool of ML algorithms to be tested @% —_— m TEIETooE
@ Loop over all candidate pipelines DATA Do,:in.expm
@ Instantiate and evaluate the ML I /7 N
model based on each pipeline Feedback
@ Select the best ML model based on 1 ]
the performance S—
validation
B

The blackbox function is expensive to be evaluated
~ |t is important to automate the Algorithms selection and configuration process
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L Problem Statement and the State of the art

Automated Machine Learning

Definition : Automated Machine Learning (AutoML)

m Automated machine learning is the process of applying ML models to real-world
problems using automation.

m |t automates the selection, composition and parameterization of ML models.

m AutoML makes ML techniques accessible to domain scientists who are interested
in applying advanced analytic but lack the required expertise.

m This can be seen as a democratization of ML.
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Automated Machine Learning

Defi omated Machine Learning (AutoML)

m Automated machine learning is the process of applying ML models to real-world
problems using automation.

m |t automates the selection, composition and parameterization of ML models.

m AutoML makes ML techniques accessible to domain scientists who are interested
in applying advanced analytic but lack the required expertise.

m This can be seen as a democratization of ML.

m Automatic selection of algorithms m Reduce the required expertise

m Automatic tuning of m Faster development of algorithms
hyperparameters m Less human time

m Solve the CASH m Further automation
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AutoML as a CASH problem

AutoML ; ,
A € argmin  £(A, Dusin Dusicaron) J

Given a training set D and a set of ADeA,HEH
algorithms A with an associated
hyperparameters space H, the
AutoML for the CASH problem is to
find the optimal algorithm and
hyperparameters space combination
(A | H*) that minimize or maximize
the coast metric £ evaluated on a
validation set D, jidation-
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AutoML as a CASH problem

AutoML i .
A € argmin  £(A, Dusin Dusicaron)

Given a training set D and a set of ADeA,HEH
algorithms A with an associated
hyperparameters space H, the

AutoML for the CASH problem is to
find the optimal algorithm and m Grid & Random search
hyperparameters space combination
(A | H*) that minimize or maximize
the coast metric £ evaluated on a
validation set D, jidation-

y

m Bayesian optimization [AutoSklearn]

m Evolutionary algorithms [TPOT]

Meta-learning (Largely unexplored)
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Grid Search and Random Searc

Unimportant parameter

Model accuracy
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Important parameter

Grid search

Unimportant parameter

Model accuracy

Important parameter

Random search
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Grid Search and Random Search

Model accuracy m Model accuracy

= .
2 2
E £
[ J [ ]

o o
5 - 0 @
o {=9
£ £ ® L
o o
5 5 s
a a ® ®
E E
= £
=1 =]

Important param&§er Important parameter

Grid search Random search

m Both completely uninformed [Bergstra et al. (2012)]
m Grid search suffers from the curse of dimensionality [Bergstra et al. (2012)]

m Random search handles low intrinsic dimensionality better [Andradéttir et al. (2015)]
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Bayesian Optimization

Autosklearn [Feurer et al. (2019, 2020)]

m Start with few (random or guided)
HPs configurations

m Repeat until stopping criterion
(fixed budget, convergence, etc.) T

posterior mean

m Accurate but so expensive and x
can overfits easily

Balanced Error Rate

time [sec]
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Genetic algorithms

Tree-based Pipeline Optimization Tool (TPOT) [Oslon et al. (2016)]

m Start with random pipelines; best "
of every generation will cross-over mL P'Pe""el o Crossover
or mutate Y o Mutation

m Pipelines are represented by a tree — — °¢ =9
of unlimited length and depth mL P'PellneZ Geneticalgorithm  OPtimal pipeline

m Accurate but so expensive and

could generate invalid individuals O@-‘ /

ML pipeline n

Accuracy
0.925
0.800
0.875
- 0.850
0.825

10
Time in hours
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Observations and main ideas

Obs 1: We cannot afford to evaluate all configurations H € H on all instances
TeD

Obs 2: We do not want to waste time on less performing H, values

Obs 3: We need enough empirical evidence to distinguish between well performing
(AD | H)

Obs 4 : Algorithms configuration can lead to over-tuning

Obs 5: If done wrong, waste of time and compute resources
v

Idea 1: Discard less performing (A, Hy) early on

Idea 2: Transfer knowledge when optimizing on new tasks

Idea 3: Guide the optimization process
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Towards human-like learning to learn

Humans learn across tasks

Why? Requires less trial-and-error, less data and time

When one learn new skills, (s)he rarely, if ever, starts from scratch.
m Start from skills learned earlier in related tasks.

m Reuses approaches that worked well before, and focuses on what is likely worth
trying based on experience.

m With every learned skill, learning new skills becomes easier, requiring fewer
examples and less trial-and-error.

In short, we learn how to learn across tasks
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L Problem Statement and the State of the art

Beyond blackbox optimization

Idea: Based on the assumption “Algorithms show similar performance with the same
configuration for similar problems” ~ Take the best configurations from previous runs
and try them as initial design on new instances.
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Beyond blackbox optimization

Idea: Based on the assumption “Algorithms show similar performance with the same
configuration for similar problems” ~~ Take the best configurations from previous runs
and try them as initial design on new instances.

@ Historical experience

. New problem

.. ?

Cost

. . Parameter
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Beyond blackbox optimization

Idea: Based on the assumption “Algorithms show similar performance with the same
configuration for similar problems” ~~ Take the best configurations from previous runs
and try them as initial design on new instances.

@ Historical experience

. New problem

o ® ?

Cost

. . Parameter



Towards Efficient and Explainable Automated Machine Learning Pipelines Design

L Problem Statement and the State of the art

Beyond blackbox optimization

Idea: Based on the assumption “Algorithms show similar performance with the same
configuration for similar problems” ~~ Take the best configurations from previous runs

and try them as initial design on new instances.

e NNt/
® E NN2
®
NN3
@
@ \

Parameter

Cost

@ Historical experience

. New problem

2

Parameter
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Beyond blackbox optimization

Idea: Based on the assumption “Algorithms show similar performance with the same
configuration for similar problems” ~~ Take the best configurations from previous runs
and try them as initial design on new instances.

@ Historical experience

. New problem

® i/
® (@] ~me
®
NN3
. . Parameter
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L Research work

Research work
m Towards a Meta-learning based AutoML framework for Industrial big data

m Learning abstract tasks representation
m Towards interactive explainable AutoML
m AMLBID : a self-explainable AutoML software package
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Towards a Meta-learning based AutoML framework for Industrial big data

Research work
m Towards a Meta-learning based AutoML framework for Industrial big data
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Towards a Meta-learning based AutoML framework for Industrial big data

Learning is a never-ending process

new tasks
Learning ‘ Xy

episodes
+

Xy

Whic
Model?
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Towards a Meta-learning based AutoML framework for Industrial big data

Learning is a never-ending process

new tasks
Learning H ‘ xy Xy xy
episodes " Knowledge | |Prew,train
Learning

Es)
<

Learni
4

P
:
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Towards a Meta-learning based AutoML framework for Industrial big data

Learning is a never-ending process

new tasks
e
Learning pxy Xy
]

Xy
i D,
episodes - Knowledgeu new,train
Learning BE
= = -

Learn more effectively : less trial-and-error, less data, and less time J
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Meta-learning

- — Training Training Training
Training 3
=
=N lid lid id
=)
Q
R R AN v Test Test Test
Validation
Meta Meta Meta
Trainina _/ \validation Test
Test Meta-learning >

(a) Learning (b) Meta-learning

Source: OBOE [Yang et al., 2019]

We can use meta-learning to generalize across datasets and models by :
m Learning which hyperparameters are really important
m Learning which hyperparameters values should be tried first

m Learning which architectures will most likely work
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Towards a Meta-learning based AutoML framework for Industrial big data

Meta-learning in practice

We need a meta-data repository of relevant prior machine learning experiments to
transfer prior knowledge across tasks.

'f_ D

r@r@

meta data
meta-learner

09

v
performance performance performance —J l'@
additional
experiments v

performance
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Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Meta-data

s . .

(§ Notation reminder
m m: Meta-features
m A : Learning algorithms

% m {': Models Hyperparameters

j ; m L : Performance estimate of A@)on the Task /
m
S-ao New Task

Py 11y

_— A i
— GOty “----------- - @l Meta-learner
+

_
4

-

— ,
® ®
!

} }

7
Performance Performance Performance

=)
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Meta-data

s . .
(§ Notation reminder

m m: Meta-features

m A : Learning algorithms
% m {': Models Hyperparameters

j ; m L : Performance estimate of A@)on the Task /
m

$ Xy by T~ Xy
i Learnin A . -
S - g Meta-learner
! 4

=

=
|

Performance

'

7
7
Performance Performance

)
- E ’
\
\

But how can we featurize a task (dataset)? J
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Towards a Meta-learning based AutoML framework for Industrial big data

Meta-learning

How to measure tasks similarity?

Tasks similarity

m Statistical meta-features that describe tabular datasets [Vanschoren et al. (2018)]

m Task2Vec: task embedding for image data [Achille et al. (2019)]

m Optimal transport : similarity measure based on comparing probability
distributions [Alvarez-Meliset al. (2020)]

m Metadata embedding based on textual dataset description [Drori et al. (2019)]

m Dataset2Vec: compares batches of datasets [Jooma et al. (2020)]

Dataset A Dataset B

How similar
are they?
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Towards a Meta-learning based AutoML framework for Industrial big data

Conceptual description

Learning phase: Constructing the knowledge base and training the Meta-Model Inferring phase: Recommending optimal pipelines for the new Dataset
: Calculate Meta-features o :
Datasets .
| 3 — Q \ME“'D“““‘ Meta-Model | New Dataset
| &= res l'b — |
| ES e e — [P — Meta-Features f—
—" .. | extraction
| == —~ QD / |
| B - I
| Machi ’ . Qo |
achine learning experiments various
| algorithms and configurations = |
| Meta-knowledge base | -
] — - | Exploring related datasets
| +ML pipelines & Meta-Features {:(.3/} | — &
| + Meta-datasets -> | pipeline candidates
| + Pipelines performances result Suggestion| s=
| engine | £3
| 5
| g p I
L________________________J to the performance criterion 50.
£
82
l 58
gL
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Prototypical implementation

AMLBID

m 400 CASH scenarios from 14.0 Al domains

| N

Datasets

m 400 real-world classification datasets Classes  Attributes  Instances

m Mix of binary (71%) and multiclass (29%) Min 2 3 185
Max 18 71 494051

m Process, Machine & Supply chain tasks

N
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Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

AMLBID

m 400 CASH scenarios from 14.0 Al domains

m 41 meta-features

| A\

Meta-features

Simple, Statistical & Information Theoretic their purpose is to measure the
complexity of the underlying problem.

Model based measures are calculated by inducing a decision tree model on a dataset
to get information about the hidden structures of the data.

Landmarking based measures that characterize the predictive problems when basic
ML algorithms are performed on them.

Complexity based measures that analyze the complexity of a problem considering the
overlap in the attributes values, the separability of the classes, and
topological properties.
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Prototypical implementation

AMLBID

m 400 CASH scenarios from 14.0 Al domains
m 41 meta-features

m 08 target algorithms and their configuration space

v
ML algorithms

m Support Vector Machines (C, Kernel, coef0, gamma, degree)
m Logistic Regression (C, penalty, fit_intercept)
m Decision Tree (max_features, min_samples_leaf, min_samples_split, criterion)

m Random Forest (bootstrap, max_features, min_samples_leaf /_split, split_criterion)

Extra Trees (bootstrap, max_features, min_samples_leaf /_split, split_criterion)
Gradient Boosting (learning_rate, n_estimators, depth, min_samples_leaf /_split)

AdaBoost (algorithm, n_estimators, learning_rate, max_depth)

Stochastic Gradient Descent (loss, penalty, learning_rate, I1 ratio, etaO, Power_t)

V.
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Prototypical implementation

AMLBID
m 400 CASH scenarios from 14.0 Al domains
m 41 meta-features
m 08 target algorithms and their configuration space

m +1000 Hyperparameters configuration

Pipelines generation

m 1000 HPs configurations for every
algorithm A over each dataset D

m 8000 pipelines for each dataset

m 10 x 5-fold stratified cross-validation
strategy
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Prototypical implementation

AMLBID
m 400 CASH scenarios from 14.0 Al domains

m 41 meta-features

m 08 target algorithms and their configuration space
m +1000 Hyperparameters configuration
m 4.000.000 evaluated pipelines in the KB

Knowledge base

Pipelines generation

m 1000 HPs configurations for every Kn = {(m. ADY  (maoo. AD
algorithm A over each dataset D g = {(m, H1)7 » (maco; HIUUO)}

m 8000 pipelines for each dataset o I_b
% x O -

m 10 x 5-fold stratified cross-validation HCTD o AGTEED
strategy algonthms HPs config.  datasets  evaluated pipelines
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Prototypical implementation

The Meta-model

Recommend the top-performing classification configurations for a combination of an
unseen dataset and a classification evaluation measure

which? m Random Forest
m k-Nearest Neighbor (kNN)

of classification type
sensitive
can handle missing values
extensible

.

Why?
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Prototypical implementation

The Meta-model

Recommend the top-performing classification configurations for a combination of an
unseen dataset and a classification evaluation measure

which? m Random Forest
m k-Nearest Neighbor (kNN) ¢

of classification type
sensitive
can handle missing values
extensible

.

Why?
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Empirical study

The experimental configuration

Benchmark datasets

m 30 datasets (binary and multiclass classification)

m OpenML AutoML benchmark [Feurer et al. (2020)]
m State-of-the-art papers [Garouani et al. (2022b)]

Baseline AutoML tools
m TPOT

m Default settings (generation and evaluation of 100 pipelines for each dataset)

A

m Auto-sklearn

m Auto-sklearn(V): Vanilla version (Bayesian optimization)
m Auto-sklearn(E) : Auto-sklearn 2.0 (Ensemble learning)

\
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Towards a Meta-learning based AutoML framework for Industrial big data

Empirical study

Experimental results: The recommendations performance

Table 1: Comparative performance analysis of AMLBID and the baseline AutoML tools.

Dataset AMLBID TPOT Auto-sklearn(V) Auto-sklearn(E) Original paper result
[137] 0.9374 0.9120 0.8215 0.9283 0.8500
[138] 0.9706 0.9517 0.9632 0.9356 0.9500
[139] 0.9941 0.9907 0.9782 0.9900 0.9895
[141] 0.9205 0.9991 0.9357 0.6863 0.9984
[142] 0.8971 0.6711 0.9080 0.9723 0.9677
[143] 0.9706 0.7767 0.6780 0.9843 0.9278
[144] 0.8967 0.8899 0.6783 0.7952 0.8840
[145] 0.8748 0.7826 0.6702 0.7727 0.8659
Wafer-ds 0.8571 0.7312 0.8033 0.8953 -
vehicle 0.8880 0.8415 0.9027 0.6591 -
Cnae-9 0.9671 0.8803 0.7922 0.8365 -
Gas_Sens 0.9739 0.9843 0.9256 0.9468 -
Covertype 0.8344 0.7307 0.7890 0.6521 -

Kcl 0.8793 0.7097 0.7697 0.8552 -
jannis 0.6719 0.7229 0.6171 0.6845 -
MiniBooNE 0.9645 0.9423 0.8343 0.8903 -
Higgs 0.713 0.726 0.7135 0.729 -
Credi-g 0.7921 0.7188 0.5739 0.6121 -
kr-vs-kp 0.9976 0.9209 0.6532 0.7593 -

car 0.9754 0.9999 0.8549 0.9462 -
albert 0.8759 0.8005 0.8288 0.7981 -
airlines 0.6982 0.6758 0.7094 0.5927 -

Best performance 19 6 2 3 -
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Empirical study

Experimental results: The recommendations performance

Table 1: Comparative performance analysis of AMLBID and the baseline AutoML tools.

Dataset AMLBID TPOT Auto-sklearn(V) Auto-sklearn(E) Original paper result
[137] 0.9374 0.9120 0.8215 0.9283 0.8500
[138] 0.9706 0.9517 0.9632 0.9356 0.9500
[139] 0.9941 0.9907 0.9782 0.9900 0.9895
[141] 0.9205 0.9991 0.9357 0.6863 0.9984
[142] 0.8971 0.6711 0.9080 0.9723 0.9677
[143] 0.9706 0.7767 0.6780 0.9843 0.9278
[144] 0.8967 0.8899 0.6783 0.7952 0.8840
[145] 0.8748 0.7826 0.6702 0.7727 0.8659
Wafer-ds 0.8571 0.7312 0.8033 0.8953 -
vehicle 0.8880 0.8415 0.9027 0.6591 -
Cnae-9 0.9671 0.8803 0.7922 0.8365 -
Gas_Sens 0.9739 0.9843 0.9256 0.9468 -
Covertype 0.8344 0.7307 0.7890 0.6521 -

Kcl 0.8793 0.7097 0.7697 0.8552 -
jannis 0.6719 0.7229 0.6171 0.6845 -
MiniBooNE 0.9645 0.9423 0.8343 0.8903 -
Higgs 0.713 0.726 0.7135 0.729 -
Credi-g 0.7921 0.7188 0.5739 0.6121 -
kr-vs-kp 0.9976 0.9209 0.6532 0.7593 -

car 0.9754 0.9999 0.8549 0.9462 -
albert 0.8759 0.8005 0.8288 0.7981 -
airlines 0.6982 0.6758 0.7094 0.5927 -

Best performance 19 6 2 3 -
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Empirical study

Experimental results: The recommendations performance

Table 1: Comparative performance analysis of AMLBID and the baseline AutoML tools.

Dataset AMLBID TPOT Auto-sklearn(V) Auto-sklearn(E) Original paper result
[137] 0.9374 0.9120 0.8215 0.9283 0.8500 (8.74) A
[138] 0.9706 0.9517 0.9632 0.9356 0.9500 (2.06) A
[139] 0.9941  0.9907 0.9782 0.9900 0.9895 (0.46) A
[141] 0.9205  0.9991 0.9357 0.6863 0.9984 (0.07) &
[142] 0.8971 0.6711 0.9080 0.9723 0.9677 (0.46) A
[143] 0.9706 0.7767 0.6780 0.9843 0.9278 (4.28) A
[144] 0.8967 0.8899 0.6783 0.7952 0.8840 (1.27) A
[145] 0.8748  0.7826 0.6702 0.7727 0.8659 (0.89) A
Wafer-ds 0.8571 0.7312 0.8033 0.8953 -

vehicle 0.8880 0.8415 0.9027 0.6591 -

Cnae-9 0.9671 0.8803 0.7922 0.8365 -

Gas_Sens 0.9739 0.9843 0.9256 0.9468 -

Covertype 0.8344 0.7307 0.7890 0.6521 -

Kcl 0.8793 0.7097 0.7697 0.8552 -

jannis 0.6719 0.7229 0.6171 0.6845 -

MiniBooNE 0.9645 0.9423 0.8343 0.8903 -

Higgs 0.713 0.726 0.7135 0.729 -

Credi-g 0.7921 0.7188 0.5739 0.6121 -

kr-vs-kp 0.9976 0.9209 0.6532 0.7593 -

car 0.9754 0.9999 0.8549 0.9462 -

albert 0.8759 0.8005 0.8288 0.7981 -

airlines 0.6982 0.6758 0.7094 0.5927 -

Best performance 19 6 2 3 -
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Empirical study

Experimental results: The run-time

Table 2: The run-time of the AMLBID, Autosklearn and TPOT tools on the benchmark datasets.

Dataset Dataset size AMLBID Autosklearn TPOT
[137] 959 00:00:05 01:23:47 00:08:14
[138] 2000 00:00:12 01:49:21 00:13:57

[139] 61000 04:19:05 03:42:09
[141] 274627 : 08:19:37 06:09:51
[142] 5000 00:01:27 02:31:07 01:38:36
[143] 1567 00:00:53 01:33:45 00:19:47
[144] 5388 00:00:57 01:56:50 00:55:51
[145] 1567 00:00:33 00:58:50 00:21:12
Wafer-ds 7306 00:02:17 03:44:26 01:42:21
vehicle 8463 00:02:28 02:12:40 01:45:40
Cnae-9 63260 00:05:47 04:07:39 03:24:52
Gas_Sens 4188 00:01:14 02:47:20 00:42:36
Covertype 25524 00:03:04 01:28:31 01:36:14
Kcl 2108 00:00:38 04:19:26 04:51:02
jannis 8641 02:31:07

MiniBooNE 52147 03:59:56

Higgs 110000 07:37:55

Credi-g 30000 02:03:34

kr-vs-kp 3196 00:00:54 01:17:19

car 1728 00:00:38 01:38:30 00:40:07
albert 43824 00:06:27 04:09:17 03:01:03

airlines 5473 00:01:40 02:18:27 00:57:52
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Meta-learning

MetaData Meta-Learner New dataset

Meta-learning E perform
space “learning

m Appropriate data characterization is crucial for the meta-learning

m Proper form of data characterization can guide the process of
learning algorithms selection and configuration
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Data characterization

Hand-designed meta-features

m Simple, Statistical & Info. theoretic

= Landmarking What criteria should we invoke to
= Model-based include or discard a family of

meta-features?
m Data Complexity

Datasets may share identical statistical properties
but noticeably they have different data distributions.

° ......-lllluJIl-, jlll.-lm.-..__.

Ve L

[Matejka et al. (2017)]

vy
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Data characterization

aph-based dataset Representation =

m Represents datasets as graphs and
then extracts their latent

representation. Inst. X2
m Vertices represent the dataset Y
instances

m Edges indicate the existence of a (

Forest

Forest

The generated graph

sufficiently high co-occurrence
score among them.

This approach suffers from a computational
complexity of O(V*) where V is the number of
vertices in the analyzed graph.

l
Classification

Generation

[Cohen-Shapira et al. (2019)]
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The AeKNN meta-model with built in data characterization

Latent meta-features extraction

xlr !search for similar tasks

X, p feature {3
3 Latent MF !
I Dataset = — :
n sampTes — K
» _’\ol._|_>
m|
X,
L2 optimal
Initial MF pipelines
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The AeKNN meta-model

Leemning
Datasets
Encoder Decoder
%% @ ! f r X Algorithm: AeKNN algorithm’s pseudo-code.
| ® @ | owE L 2 @ | Input: Train Data, Test Data, KB » KB is the constructed knowledge base
M ! P e ! @ ! Output: P<P,Py,Py,..., P, > > Suggested pipelines
Mm—— @ —|® @ ! @ Learning phase :
| L Il B £ ] | 1: MetaData — MetaFeaturesExtractor(TrainData)
X '@ D [ L} 2: AE « Autoencoder (MetaData)
Inferiog________ i ® ! L I 3: EncoderModel « FeedForwardAEModel (AE)
- [ ] ; ) \ 9! 4 LatentMetaFeatures — EncoderModel ( TrainData)
=) 1 l 5: AeKNN — KNN(LatentMetaFeatures, KB)

1 & 3 <R Inferring phase :
Meta-features vector Encoder gl 6: MetaFeatures — MetaF eaturesExtractor (TestData)
mie—> CERFLRERE — & — ? 7: LatentMetaFeatures — EncoderModel (MetaFeatures)
8: OptimalPiplines — AeKNN(LatentMetaFeatures, KB)

) optinal
Meta-Features Extracton e e
LMF: Latent Meta Features i
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AekNN foundations

Autoencoders

Input output
x°

x
— — — — Encoder — — — —— Decoder — — — ~

! ®

| |

®_ i _ @ !

®_©0 "o
®-

o e 0 o

{Q
@
@
@
'@

o R 2

Decoder
Z = E(X) that encodes the high dimensional decoding function X’ = D(Z) that
input data X = {x1,x2, .., xn} into a low produces a reconstruction of the inputs
dimensional hidden representation X' ={x{,x},...,xp}, while minimizing
Z = {z1,22,zm} by an activation function f the reconstruction error L(X, X”).

L(X, X") = = 3211 (xi log x7) + (1 — x;) (xi log (1 — x{)) )
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Experimental study

AeKNN architectures analysis

AeKNN is characterized by the /;” parameter that establishes the architecture of the
network. This parameter allows the selection of different architectures in terms of
depth (number of layers) and number of neurons per layer.

Table 3: Experimental configurations of AeKNN.

Model Number of Number of neurons per layer

hidden layers L1 L2 Latent layer L4 L5

Architecture /;"

AeKNN1 1 - - 32 - - (32)
AeKNN2 1 - - 16 - - (16)
AeKNN3 1 - - 8 - - (8)
AeKNN4 3 32 - 16 - 32 (32,16,32)
AeKNN5 5

2 16 8 16 32 (32,168,16,32)
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The AeKNN meta-model

AeKNN architectures analysis

Table 4: Accuracy classification results of the recommended pipelines for the considered AeKNN
architectures.

AeKNN
Dataset
(32) (16) (8) (32,16,32) (32,16,8,16,32)

APSFailure 0.9921 0.9734 0.86475 0.9033 0.8325
Higgs 0.7283 0.6911 0.4872 0.6398 0.5316
CustSat 0.8155 0.7826 0.5318 0.8559 0.6943
car 0.9999 0.9808 0.7049 0.9203 0.8277
kr-vs-kp 0.9976 0.8130 0.6532 0.7330 0.7291
airlines 0.6982 0.6833 0.5627 0.7167 0.4334
vehicle 0.8880 0.8934 0.3591 0.8004 0.4098
MiniBooNE 0.9645 0.9217 0.8143 0.85 0.7436
Jjannis 0.7229 0.6843 0.6371 0.6911 0.6608
nomao 0.9708 0.9719 0.5395 0.6994 0.4659
Credi-g 0.7921 0.6502 0.5121 0.3871 0.4768
Kcl 0.8793 0.8754 0.3597 0.7488 0.5691
Cnae-9 0.9671 0.8923 0.5622 0.5208 0.6049
albert 0.8759 0.8131 0.6981 0.8439 0.9053
Numerai28.6 0.5207 0.4530 0.3029 0.4760 0.2810
segment 0.9735 0.9622 0.8837 0.9508 0.5791
Covertype 0.8344 0.7189 0.6521 0.6305 0.4620
KDDCup 0.9740 0.8514 0.8034 0.8821 0.8572
shuttle 0.9362 0.9997 0.6429 0.8576 0.6744
Gas_Sens-uci 0.9843 0.9755 0.7256 0.9667 0.7032

Best performance 14 3 0 2 1
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AeKNN architectures analysis

Table 4: F1-Score classification results of the recommended pipelines for the considered AeKNN
architectures.

AeKNN
Dataset
(32) (16) (8) (32,16,32) (32,16,8,16,32)

APSFailure 0.9823 0.7553 0.9875 0.7573 0.9055
Higgs 0.8743 0.5451 0.5602 0.4938 0.5316
CustSat 0.9250 0.6366 0.4953 0.8194 0.5483
car 0.9635 0.9874 0.8144 0.7613 0.6817
kr-vs-kp 0.9246 0.7035 0.6532 0.5870 0.8751
airlines 0.5887 0.7928 0.5992 0.5707 0.3604
vehicle 0.8515 0.8204 0.2131 0.9099 0.3733
MiniBooNE 0.9715 0.9871 0.8873 0.7405 0.8531
Jjannis 0.7229 0.5748 0.8068 0.6911 0.6006
nomao 0.9343 0.9213 0.5395 0.8454 0.4294
Credi-g 0.9381 0.5772 0.5661 0.4141 0.5863
Kcl 0.9321 0.8389 0.9523 0.8583 0.4596
Cnae-9 0.8962 0.8741 0.6352 0.5938 0.7509
albert 0.8394 0.7036 0.6251 0.8074 0.9783
Numerai28.6 0.3747 0.5260 0.3029 0.4395 0.3540
segment 0.9130 0.8830 0.8837 0.7139 0.5426
Covertype 0.6886 0.6824 0.7249 0.4845 0.4620
KDDCup 0.9571 0.9974 0.7669 0.8386 0.7112
shuttle 0.9653 0.8537 0.4969 0.8306 0.7109
Gas_Sens-uci 0.6161 0.8660 0.9667 0.7667 0.8492

Best performance 8 5 5 1 1
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AeKNN architectures analysis

Table 4: AUC classification results of the recommended pipelines for the considered AeKNN
architectures.

AeKNN
Dataset
(32) (16) (8) (32,16,32) (32,16,8,16,32)

APSFailure 0.9191 0.9763 0.8648 0.8639 0.7230
Higgs 0.7283 0.8371 0.3412 0.5668 0.5316
CustSat 0.9654 0.6731 0.6413 0.8155 0.7673
car 0.9608 0.9269 0.9873 0.5298 0.6817
kr-vs-kp 0.7765 0.9103 0.6167 0.8790 0.5831
airlines 0.8627 0.5373 0.6357 0.8442 0.5794
vehicle 0.9610 0.8569 0.3956 0.5464 0.5558
MiniBooNE 0.8550 0.9947 0.7873 0.7230 0.5976
jannis 0.7338 0.7229 0.4911 0.6911 0.5383
nomao 0.8594 0.8423 0.8978 0.5899 0.6119
Credi-g 0.9381 0.7232 0.5121 0.4601 0.3308
Kcl 0.7333 0.9119 0.3962 0.6028 0.6421
Cnae-9 0.8941 0.8433 0.4162 0.5938 0.4954
albert 0.9124 0.9226 0.6616 0.7344 0.7593
Numerai28.6 0.6302 0.5435 0.2664 0.3665 0.2080
segment 0.8900 0.8527 0.6548 0.4362 0.4331
Covertype 0.7979 0.6459 0.7981 0.6670 0.4620
KDDCup 0.9876 0.7419 0.9408 0.6587 0.7477
shuttle 0.9727 0.9267 0.7159 0.9306 0.7839
Gas_Sens-uci 0.8748 0.8295 0.7986 0.5572 0.7762

Best performance 11 6 3 0 0
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AeKNN architectures analysis

It is considered that /;” = (32) is the best among the considered architectures with a
reconstruction error standard deviation of 0.020025 J

— Initial meta-features
0.8 7 —— Reconstructed meta-features
Error
0.6
]
32
T 0.4+
0.2
0.0 A

MF1 MF5 MF10 MF15 MF20 MF25 MF30 MF35 MF40
Meta-features
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The AeKNN meta-model

Results of the algorithms selection process

Table 5: Results of RF, XGB, KNN, and AeKNN meta-models for
recommending optimal pipelines for test data.

Dataset Accuracy
AeKNN KNN XGB RF

APSFailure 0.9921 (0.11) A 0.9910 0.9673 0.8950
Higgs 0.7283 (1.53) A 0.7130 0.6801 0.6072
CustSat 0.8155 (4.04) v 0.8559 0.8715 0.7382
car 0.9999 (2.45) A 0.9754 0.9462 0.8549
kr-vs-kp 0.9985 (0.09) A 0.9976 0.7593 0.6532
airlines 0.7021 (0.39)A 0.6982 0.7094 0.5927
vehicle 0.8952 (0.72) A 0.8880 0.9027 0.6591
MiniBooNE 0.9730 (0.85) A 0.9645 0.8903 0.8343
jannis 0.7229 (5.10) A 0.6719 0.6845 0.6171
nomao 0.9884 (1.76) A 0.9708 0.7987 0.6995
Credi-g 0.8037 (1.16) A 0.7921 0.5739 0.6121
Kcl 0.8905 (1.12) A 0.8793 0.7697 0.7097
Cnae-9 0.9800 (1.29) A 0.9671 0.8365 0.7922
albert 0.8790 (0.31) A 0.8759 0.8288 0.7981
Numerai28.6 0.5591 (3.84) A 0.5207 0.4836 0.4229
segment 0.9867 (1.32) A 0.9735 0.9542 0.9337
Covertype 0.8637 (2.93) A 0.8344 0.7890 0.6521
KDDCup 0.9781 (0.41) A 0.9740 0.9331 0.8934
shuttle 0.9362 (2.87) ¥ 0.9649 0.9649 0.8429

Gas_Sens-uci 0.9843 (1.04) A 0.9739 0.9468 0.9256
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The AeKNN meta-model

Results of latent meta-features extraction

Traditional meta-features Latent meta-features
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The AeKNN meta-model

Results of latent meta-features extraction




Towards Efficient and Explainable Automated Machine Learning Pipelines Design
L Research work

Towards interactive explainable AutoML

Research work

m Towards interactive explainable AutoML



wards Efficient and Explainable Automated Machine Learning Pipelines Design
L Research work

Towards interactive explainable AutoML

AutoML Process

Evaluate Performance “Guess” new
ML Settings P T
L(Ay, Drain) Dyatia) ol Optimized ML-Pipeline
AutoML " » —
Loop Processing Predictive Post-
Model Processing
Normalization, o
A
Feature Selection, H
Feature Reduction,
@ Notation reminder
. = A: Algorithms space
Train ML Model = : Hyperparameters space
W) -
Ay € argmin L(Ay, Derain, Dyatia ® £ Loss function
AeAHeH

Fully automated ML design can also receive pushback
m Did the AutoML run long enough?
m Did the AutoML miss some suitable models?

Did the AutoML sufficiently explore the search space?

Did the recommended configuration over or under fit?

How to verify results?
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Humans and AutoML

Who is using AutoML?

|v2

Users without any deep expertise in ML

[Bouthillier et al. (2020)] showed that
authors of NeurlPS and ICLR papers:

m often optimize their pipelines
hyperparameters (> 75%)

m often do it manually and don't use
AutoML tools

ML experts & researchers, data scientists

[Crisan et al. (2021)] interviewed data
scientists and concluded :

m experts don’t necessarily trust AutoML

m visualization of results and interaction
with processes can help to increase the
acceptance of AutoML
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Towards Interactive eXplainable AutoML (IXAutoML)

What we are aiming for?

An ideal XAl system should be flexible enough to adapt to the AutoML output (model
and data agnostic).

Interpretability Explainability

How a prediction is Why can we learn How trustworthy is
made by the model from the model the model’s prediction
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Towards Interactive eXplainable AutoML (IXAutoML)

Pipelines recommendation (AMLBID) Reporting & Trust building
|

1 . Tasks
AutoML AutoML — !
| ﬂum ML— D Pipeiinez | . Recommendation properties
. Input Output Pipelies | 1
| 1 4 1
3 | Model summary &Classification stals.l
- }"roperties 1 Features importance & dependence;

(1) Search space exploration

(2) Ranked recommendation !

What-if-analysis & Interaction

Explanations

Decision path |
(Visualisation, plots..)

!
Explanations XAl | |
Input generation Output Improvement '
! ot (ANOVA snalysis) | " — N
| \ 1 AMLExp[ainer ! lecomment lion refinemen

I I
Interactive dashboard generation
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Demonstration

— ’ [ { Model selection &
Preprocessing

Acnnflgura!lnn
Outcome

Top ranked ML
pipelines

Data Input Mudel training

e AML @@BID T'ﬂ]’l r—

Assistance to
refinement

£¥Model evaluation

Explanations
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AMLBID : Democratization of explainable machine learning

m It is open-source (MIT) and trivial to use.

from AMLBID.recommender import AMLBID_Recommender
from AMLBID.explainer import AMLBID_Explainer

W

model ,config=AMLBID_Recommender.recommend (Data, metric, mode)
5 model.fit (X_train, Y_train)

7 Explainer = AMLBID_Explainer.explain(model, config, Data)
Explainer.dash ()

o
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AMLBID : Democratization of explainable machine learning

m It is open-source (MIT) and trivial to use.
m Downloaded more than 17.753 times on PyPl in its first year.

30d 60d 90d 120d | all Daily Download Quantity of AMLBID package - System
°
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°
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AMLBID : Democratization of explainable machine learning

m It is open-source (MIT) and trivial to use.
m Downloaded more than 17.753 times on PyPl in its first year.

m Multiple industrial requests.

30d 60d 90d 120d | all Daily Download Quantity of AMLBID package - System
°
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Perspectives

Expand AMLBID

m Support the algorithms of :

m Regression
m Deep learning
m Distributed ML (Spark ML)

m Cover the tasks of :

m Data pre-processing
m Features engineering
m Post-processing analysis

m Enrich the Meta-KB from collaborative ML platforms (Kaggle, OpenML, etc.)

Explore the inclusion of AutoXAl in the AMLexplainer explanatory artefact

Explore the use of the constructed knowledge base for further guidance and
automation of ML applications
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