
Towards Efficient and Explainable Automated Machine
Learning Pipelines Design

Moncef GAROUANI

Institut de Recherche en Informatique de Toulouse
26 May 2023

Moncef Garouani

Email : mgarouani@gmail.com
Website : www.mgarouani.fr
Temporary Lecturer and Research Assistant
EILCO /ULCO University - LISIC Laboratory

Slides available at mgarouani.fr/talks → IRIT seminar

(all references are clickable links)

1/52

2/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Outline

1 Context

2 Problem Statement and the State of the art

3 Research work
Towards a Meta-learning based AutoML framework for Industrial big data
Learning abstract tasks representation
Towards interactive explainable AutoML
AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives

3/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Context

1 Context

2 Problem Statement and the State of the art

3 Research work
Towards a Meta-learning based AutoML framework for Industrial big data
Learning abstract tasks representation
Towards interactive explainable AutoML
AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives

4/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Context

Successes of Machine & Deep learning

Self-driving cars Robotic

Objects recognition

Speech recognition

5/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Context

Machine Learning solutions in the industry

Advantages : High predictive accuracy
: Data-driven, few assumptions

Challenges 8 Various ML algorithms : Which one to choose?
8 Numerous Hyperparameters (categorical, continuous, conditional)
8 Numerous metrics of performance (Acc, AUC, Recall, etc.)
8 Need high technical expertise in statistics and data science

 No ”one-size-fits-all” ML solution for advanced analytics

5/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Context

Machine Learning solutions in the industry

Advantages : High predictive accuracy
: Data-driven, few assumptions

Challenges 8 Various ML algorithms : Which one to choose?
8 Numerous Hyperparameters (categorical, continuous, conditional)
8 Numerous metrics of performance (Acc, AUC, Recall, etc.)
8 Need high technical expertise in statistics and data science

Accuracy

Best ML algorithm
0.93 0.99 0.78 0.97

Grad. Boosting DT SVM RF

Best Manufacturing Score 0.85 0.98 0.62 0.92

[Mazumder et al.] [Tarak et al.] CNC MTW [Thiyagu, et al.]

 No ”one-size-fits-all” ML solution for advanced analytics

6/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Context

Developing advanced Analytics : Goal

Make Machine Learning

Do the Crafting

Many scenarios, many
variables, vorious needs
Continuously changing!

Brut-force selection of ML
methods and design parameters

Prohibitively expensive & require
technical expertise

Mission statement

Enabling users to efficiently apply ML!
 Develop holistic transparent AutoML

6/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Context

Developing advanced Analytics : Goal

Make Machine Learning

Do the Crafting

Many scenarios, many
variables, vorious needs
Continuously changing!

Brut-force selection of ML
methods and design parameters

Prohibitively expensive & require
technical expertise

Mission statement

Enabling users to efficiently apply ML!
 Develop holistic transparent AutoML

7/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

1 Context

2 Problem Statement and the State of the art

3 Research work
Towards a Meta-learning based AutoML framework for Industrial big data
Learning abstract tasks representation
Towards interactive explainable AutoML
AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives

8/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

The algorithms selection and configuration problem

Definition : Combined Algorithms selection and Hyperparameters optimization (CASH)

Given :

• a set of algorithms A = {A(1), . . . ,A(n)}
• H(i) the hyperparameters space of A(i)i ∈ 1, . . . , n

• a set of training problem instances D divided on Dtrain and Dvalid

• a cost metric L : A(i) × Hn × D → R assessing the predictive performance of the
model induced by the algorithm A(i) with an HP configuration Hn ∈ H(i) on the
dataset D

Find : A
(i)
H∗ that minimizes or maximizes the L on D such that :

A
(i)
H∗ ∈ argmin

A(i)∈A,H∈H
L(AH ,Dtrain,Dvalidation)

9/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

Challenges of the algorithms selection and configuration

1 A pool of ML algorithms to be tested

2 Loop over all candidate pipelines

3 Instantiate and evaluate the ML
model based on each pipeline

4 Select the best ML model based on
the performance

6

The blackbox function is expensive to evaluate Automate the Algorithms selection
and configuration process is important

9/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

Challenges of the algorithms selection and configuration

1 A pool of ML algorithms to be tested

2 Loop over all candidate pipelines

3 Instantiate and evaluate the ML
model based on each pipeline

4 Select the best ML model based on
the performance

The blackbox function is expensive to be evaluated
 It is important to automate the Algorithms selection and configuration process

10/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

Automated Machine Learning

Definition : Automated Machine Learning (AutoML)

Automated machine learning is the process of applying ML models to real-world
problems using automation.

It automates the selection, composition and parameterization of ML models.

AutoML makes ML techniques accessible to domain scientists who are interested
in applying advanced analytic but lack the required expertise.

This can be seen as a democratization of ML.

Objectives

Automatic selection of algorithms

Automatic tuning of
hyperparameters

Solve the CASH

Benefits

Reduce the required expertise

Faster development of algorithms

Less human time

Further automation

10/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

Automated Machine Learning

Definition : Automated Machine Learning (AutoML)

Automated machine learning is the process of applying ML models to real-world
problems using automation.

It automates the selection, composition and parameterization of ML models.

AutoML makes ML techniques accessible to domain scientists who are interested
in applying advanced analytic but lack the required expertise.

This can be seen as a democratization of ML.

Objectives

Automatic selection of algorithms

Automatic tuning of
hyperparameters

Solve the CASH

Benefits

Reduce the required expertise

Faster development of algorithms

Less human time

Further automation

11/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

AutoML as a CASH problem

AutoML

Given a training set D and a set of
algorithms A with an associated
hyperparameters space H, the
AutoML for the CASH problem is to
find the optimal algorithm and
hyperparameters space combination
(A(i) , H∗) that minimize or maximize
the coast metric L evaluated on a
validation set Dvalidation.

A
(i)
H∗ ∈ argmin

A(i)∈A,H∈H
L(AH ,Dtrain,Dvalidation)

How to search?

Grid & Random search

Bayesian optimization [AutoSklearn]

Evolutionary algorithms [TPOT]

Meta-learning (Largely unexplored)

11/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

AutoML as a CASH problem

AutoML

Given a training set D and a set of
algorithms A with an associated
hyperparameters space H, the
AutoML for the CASH problem is to
find the optimal algorithm and
hyperparameters space combination
(A(i) , H∗) that minimize or maximize
the coast metric L evaluated on a
validation set Dvalidation.

A
(i)
H∗ ∈ argmin

A(i)∈A,H∈H
L(AH ,Dtrain,Dvalidation)

How to search?

Grid & Random search

Bayesian optimization [AutoSklearn]

Evolutionary algorithms [TPOT]

Meta-learning (Largely unexplored)

12/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

Grid Search and Random Search

Both completely uninformed [Bergstra et al. (2012)]

Grid search suffers from the curse of dimensionality [Bergstra et al. (2012)]

Random search handles low intrinsic dimensionality better [Andradóttir et al. (2015)]

12/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

Grid Search and Random Search

Both completely uninformed [Bergstra et al. (2012)]

Grid search suffers from the curse of dimensionality [Bergstra et al. (2012)]

Random search handles low intrinsic dimensionality better [Andradóttir et al. (2015)]

13/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

Bayesian Optimization

Autosklearn [Feurer et al. (2019, 2020)]

Start with few (random or guided)
HPs configurations

Repeat until stopping criterion
(fixed budget, convergence, etc.)

Accurate but so expensive and
can overfits easily

14/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

Genetic algorithms

Tree-based Pipeline Optimization Tool (TPOT) [Oslon et al. (2016)]

Start with random pipelines; best
of every generation will cross-over
or mutate

Pipelines are represented by a tree
of unlimited length and depth

Accurate but so expensive and
could generate invalid individuals

ML pipeline 1

ML pipeline 2

ML pipeline n

Genetic algorithm Optimal pipeline

n

• Crossover

• Mutation

15/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

Observations and main ideas

Observations

Obs 1 : We cannot afford to evaluate all configurations H ∈ H on all instances
I ∈ D

Obs 2 : We do not want to waste time on less performing Hn values

Obs 3 : We need enough empirical evidence to distinguish between well performing
(A(i) , H)

Obs 4 : Algorithms configuration can lead to over-tuning

Obs 5 : If done wrong, waste of time and compute resources

Idea

Idea 1 : Discard less performing (A,Hn) early on

Idea 2 : Transfer knowledge when optimizing on new tasks

Idea 3 : Guide the optimization process

16/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

Towards human-like learning to learn

Humans learn across tasks

Why? Requires less trial-and-error, less data and time

Learning is a never-ending process

!3

Humans don’t learn from scratch

When one learn new skills, (s)he rarely, if ever, starts from scratch.

Start from skills learned earlier in related tasks.

Reuses approaches that worked well before, and focuses on what is likely worth
trying based on experience.

With every learned skill, learning new skills becomes easier, requiring fewer
examples and less trial-and-error.

In short, we learn how to learn across tasks

17/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

Beyond blackbox optimization

Idea : Based on the assumption “Algorithms show similar performance with the same
configuration for similar problems” Take the best configurations from previous runs
and try them as initial design on new instances.

17/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

Beyond blackbox optimization

Idea : Based on the assumption “Algorithms show similar performance with the same
configuration for similar problems” Take the best configurations from previous runs
and try them as initial design on new instances.

Historical experience

New problem

17/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

Beyond blackbox optimization

Idea : Based on the assumption “Algorithms show similar performance with the same
configuration for similar problems” Take the best configurations from previous runs
and try them as initial design on new instances.

NN1

NN2

NN3

Historical experience

New problem

17/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

Beyond blackbox optimization

Idea : Based on the assumption “Algorithms show similar performance with the same
configuration for similar problems” Take the best configurations from previous runs
and try them as initial design on new instances.

NN1

NN2

NN3

Historical experience

New problem

17/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Problem Statement and the State of the art

Beyond blackbox optimization

Idea : Based on the assumption “Algorithms show similar performance with the same
configuration for similar problems” Take the best configurations from previous runs
and try them as initial design on new instances.

NN1

NN2

NN3

Historical experience

New problem

18/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

1 Context

2 Problem Statement and the State of the art

3 Research work
Towards a Meta-learning based AutoML framework for Industrial big data
Learning abstract tasks representation
Towards interactive explainable AutoML
AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives

19/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

1 Context

2 Problem Statement and the State of the art

3 Research work
Towards a Meta-learning based AutoML framework for Industrial big data
Learning abstract tasks representation
Towards interactive explainable AutoML
AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives

20/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Learning is a never-ending process

Learning
episodes

Task
1

Learning

MMooddee
lslsModels

x,y
Task 1

Learning

MMooddee
lsls
Models

x,y
Task 2

Learning

MMoodd
eelsls

s
Models

x,y
Task 3

Which
Model?

new tasks

x,y
Task n

Learn more effectively : less trial-and-error, less data, and less time

20/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Learning is a never-ending process

Learning
episodes

Task
1

Learning

MMooddee
lslsModels

x,y
Task 1

Learning

MMooddee
lsls
Models

x,y
Task 2

Learning

MMoodd
eelsls

s
Models

x,y
Task 3

Model

new tasks

x,y
Task n

} meta -learning

Knowledge Dnew,train

Learn more effectively : less trial-and-error, less data, and less time

20/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Learning is a never-ending process

Learning
episodes

Task
1

Learning

MMooddee
lslsModels

x,y
Task 1

Learning

MMooddee
lsls
Models

x,y
Task 2

Learning

MMoodd
eelsls

s
Models

x,y
Task 3

Model

new tasks

x,y
Task n

} meta -learning

Knowledge Dnew,train

Learn more effectively : less trial-and-error, less data, and less time

21/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Meta-learning

(a) Learning (b) Meta-learning

Training

Validation

Test

Learning

Learning

 Training Training Training

 Validation Validation Validation

 Test Test Test

 Meta Meta Meta
 Training validation Test

Learning

Meta-learning

Source : OBOE [Yang et al., 2019]

We can use meta-learning to generalize across datasets and models by :

Learning which hyperparameters are really important

Learning which hyperparameters values should be tried first

Learning which architectures will most likely work

22/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Meta-learning in practice

We need a meta-data repository of relevant prior machine learning experiments to
transfer prior knowledge across tasks.

Task 1 Task 2 Task 3

ModelsModelsModels

performance performance performance

LearningLearningLearners
LearningLearningLearners

LearningLearningLearners

ModelsModelsModels
ModelsModelsModels } meta-data

!7

Meta-learning

New Task

performance

ModelsModelsModels

meta-learner

base-learner

additional

experiments

Meta-learner learns a (base-)learning algorithm, based on meta-data

23/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Meta-data

Task
1

Learning

MMooddee
lslsModels

x,y
Task 1

Learning

MMooddee
lsls
Models

x,y
Task j…

Performance Performance

Meta-learner

MMooddee
lsls
Models

x,y
New Task

Performance

A

H

L

m

m : Meta-features
A : Learning algorithms
H : Models Hyperparameters
L : Performance estimate of A(H) on the Task j

Notation reminder

But how can we featurize a task (dataset)?

23/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Meta-data

Task
1

Learning

MMooddee
lslsModels

x,y
Task 1

Learning

MMooddee
lsls
Models

x,y
Task j…

Performance Performance

Meta-learner

MMooddee
lsls
Models

x,y
New Task

Performance

A

H

L

m

m : Meta-features
A : Learning algorithms
H : Models Hyperparameters
L : Performance estimate of A(H) on the Task j

Notation reminder

But how can we featurize a task (dataset)?

24/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Meta-learning
How to measure tasks similarity?

Tasks similarity

Statistical meta-features that describe tabular datasets [Vanschoren et al. (2018)]

Task2Vec : task embedding for image data [Achille et al. (2019)]

Optimal transport : similarity measure based on comparing probability
distributions [Alvarez-Meliset al. (2020)]

Metadata embedding based on textual dataset description [Drori et al. (2019)]

Dataset2Vec : compares batches of datasets [Jooma et al. (2020)]

How similar
are they?

Dataset A Dataset B

25/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Conceptual description

Learning phase: Constructing the knowledge base and training the Meta-Model

1

Meta-Model
1

1

�

1

1
1

l
1

1

1

1

.. @
1
1

1
Suggestion

engine
 1
1

1
L ____________________________ J

Inferring phase: Recommending optimal pipelines for the new Dataset

New Dataset

Meta-Features
extraction

Exploring related datasets
&

pipeline candidates

Ranking pipelines list according
to the performance criterion

Optimal pipeline

@

.,_

·;::=
GI ftl - 0
'ï: a,
0 a:

GI •
o�
CU.
.. .

E o ... 0
0�
't: œ
GI G1 o.. -

Datasets

Machine learning experiments various
algorithms and configurations

Calculate Meta-features

26/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

AMLBID

400 CASH scenarios from I4.0 AI domains

41 meta-features

08 target algorithms and their configuration space

+1000 Hyperparameters configuration

4.000.000 evaluated pipelines in the KB

Datasets

400 real-world classification datasets

Mix of binary (71%) and multiclass (29%)

Process, Machine & Supply chain tasks

Classes Attributes Instances

Min 2 3 185
Max 18 71 494051

26/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

AMLBID

400 CASH scenarios from I4.0 AI domains

41 meta-features

08 target algorithms and their configuration space

+1000 Hyperparameters configuration

4.000.000 evaluated pipelines in the KB

Meta-features

Simple, Statistical & Information Theoretic their purpose is to measure the
complexity of the underlying problem.

Model based measures are calculated by inducing a decision tree model on a dataset
to get information about the hidden structures of the data.

Landmarking based measures that characterize the predictive problems when basic
ML algorithms are performed on them.

Complexity based measures that analyze the complexity of a problem considering the
overlap in the attributes values, the separability of the classes, and
topological properties.

26/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

AMLBID

400 CASH scenarios from I4.0 AI domains

41 meta-features

08 target algorithms and their configuration space

+1000 Hyperparameters configuration

4.000.000 evaluated pipelines in the KB

ML algorithms

Support Vector Machines (C, Kernel, coef0, gamma, degree)

Logistic Regression (C, penalty, fit intercept)

Decision Tree (max features, min samples leaf, min samples split, criterion)

Random Forest (bootstrap, max features, min samples leaf / split, split criterion)

Extra Trees (bootstrap, max features, min samples leaf / split, split criterion)

Gradient Boosting (learning rate, n estimators, depth, min samples leaf / split)

AdaBoost (algorithm, n estimators, learning rate, max depth)

Stochastic Gradient Descent (loss, penalty, learning rate, l1 ratio, eta0, Power t)

26/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

AMLBID

400 CASH scenarios from I4.0 AI domains

41 meta-features

08 target algorithms and their configuration space

+1000 Hyperparameters configuration

4.000.000 evaluated pipelines in the KB

Pipelines generation

1000 HPs configurations for every
algorithm A over each dataset D
8000 pipelines for each dataset

10 x 5-fold stratified cross-validation
strategy

26/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

AMLBID

400 CASH scenarios from I4.0 AI domains

41 meta-features

08 target algorithms and their configuration space

+1000 Hyperparameters configuration

4.000.000 evaluated pipelines in the KB

Pipelines generation

1000 HPs configurations for every
algorithm A over each dataset D
8000 pipelines for each dataset

10 x 5-fold stratified cross-validation
strategy

Knowledge base

KB = {(m1,A
(1)

H1), . . . , (m400,A
(n)

H1000)}

8
algorithms

1000

HPs config.

400

datasets

4.000.000

evaluated pipelines

KB

27/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

The Meta-model

Recommend the top-performing classification configurations for a combination of an
unseen dataset and a classification evaluation measure

which? Random Forest
k-Nearest Neighbor (kNN)

Why? of classification type
sensitive
can handle missing values
extensible

27/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

The Meta-model

Recommend the top-performing classification configurations for a combination of an
unseen dataset and a classification evaluation measure

which? Random Forest
k-Nearest Neighbor (kNN) 4

Why? of classification type
sensitive
can handle missing values
extensible

28/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Empirical study
The experimental configuration

Benchmark datasets

30 datasets (binary and multiclass classification)
OpenML AutoML benchmark [Feurer et al. (2020)]
State-of-the-art papers [Garouani et al. (2022b)]

Baseline AutoML tools

TPOT
Default settings (generation and evaluation of 100 pipelines for each dataset)

Auto-sklearn
Auto-sklearn(V) : Vanilla version (Bayesian optimization)
Auto-sklearn(E) : Auto-sklearn 2.0 (Ensemble learning)

29/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Empirical study
Experimental results : The recommendations performance

Table 1: Comparative performance analysis of AMLBID and the baseline AutoML tools.

Dataset AMLBID TPOT Auto-sklearn(V) Auto-sklearn(E) Original paper result

[137] 0.9374 0.9120 0.8215 0.9283 0.8500
[138] 0.9706 0.9517 0.9632 0.9356 0.9500
[139] 0.9941 0.9907 0.9782 0.9900 0.9895
[141] 0.9205 0.9991 0.9357 0.6863 0.9984
[142] 0.8971 0.6711 0.9080 0.9723 0.9677
[143] 0.9706 0.7767 0.6780 0.9843 0.9278
[144] 0.8967 0.8899 0.6783 0.7952 0.8840
[145] 0.8748 0.7826 0.6702 0.7727 0.8659
Wafer-ds 0.8571 0.7312 0.8033 0.8953 -
vehicle 0.8880 0.8415 0.9027 0.6591 -
Cnae-9 0.9671 0.8803 0.7922 0.8365 -
Gas Sens 0.9739 0.9843 0.9256 0.9468 -
Covertype 0.8344 0.7307 0.7890 0.6521 -
Kc1 0.8793 0.7097 0.7697 0.8552 -

.

.

.
. . .

. . .
. . .

. . .
.
.
.

jannis 0.6719 0.7229 0.6171 0.6845 -
MiniBooNE 0.9645 0.9423 0.8343 0.8903 -
Higgs 0.713 0.726 0.7135 0.729 -
Credi-g 0.7921 0.7188 0.5739 0.6121 -
kr-vs-kp 0.9976 0.9209 0.6532 0.7593 -
car 0.9754 0.9999 0.8549 0.9462 -
albert 0.8759 0.8005 0.8288 0.7981 -
airlines 0.6982 0.6758 0.7094 0.5927 -

Best performance 19 6 2 3 -

29/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Empirical study
Experimental results : The recommendations performance

Table 1: Comparative performance analysis of AMLBID and the baseline AutoML tools.

Dataset AMLBID TPOT Auto-sklearn(V) Auto-sklearn(E) Original paper result

[137] 0.9374 0.9120 0.8215 0.9283 0.8500
[138] 0.9706 0.9517 0.9632 0.9356 0.9500
[139] 0.9941 0.9907 0.9782 0.9900 0.9895
[141] 0.9205 0.9991 0.9357 0.6863 0.9984
[142] 0.8971 0.6711 0.9080 0.9723 0.9677
[143] 0.9706 0.7767 0.6780 0.9843 0.9278
[144] 0.8967 0.8899 0.6783 0.7952 0.8840
[145] 0.8748 0.7826 0.6702 0.7727 0.8659
Wafer-ds 0.8571 0.7312 0.8033 0.8953 -
vehicle 0.8880 0.8415 0.9027 0.6591 -
Cnae-9 0.9671 0.8803 0.7922 0.8365 -
Gas Sens 0.9739 0.9843 0.9256 0.9468 -
Covertype 0.8344 0.7307 0.7890 0.6521 -
Kc1 0.8793 0.7097 0.7697 0.8552 -

.

.

.
. . .

. . .
. . .

. . .
.
.
.

jannis 0.6719 0.7229 0.6171 0.6845 -
MiniBooNE 0.9645 0.9423 0.8343 0.8903 -
Higgs 0.713 0.726 0.7135 0.729 -
Credi-g 0.7921 0.7188 0.5739 0.6121 -
kr-vs-kp 0.9976 0.9209 0.6532 0.7593 -
car 0.9754 0.9999 0.8549 0.9462 -
albert 0.8759 0.8005 0.8288 0.7981 -
airlines 0.6982 0.6758 0.7094 0.5927 -

Best performance 19 6 2 3 -

29/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Empirical study
Experimental results : The recommendations performance

Table 1: Comparative performance analysis of AMLBID and the baseline AutoML tools.

Dataset AMLBID TPOT Auto-sklearn(V) Auto-sklearn(E) Original paper result

[137] 0.9374 0.9120 0.8215 0.9283 0.8500 (8.74)N
[138] 0.9706 0.9517 0.9632 0.9356 0.9500 (2.06)N
[139] 0.9941 0.9907 0.9782 0.9900 0.9895 (0.46)N
[141] 0.9205 0.9991 0.9357 0.6863 0.9984 (0.07)N
[142] 0.8971 0.6711 0.9080 0.9723 0.9677 (0.46)N
[143] 0.9706 0.7767 0.6780 0.9843 0.9278 (4.28)N
[144] 0.8967 0.8899 0.6783 0.7952 0.8840 (1.27)N
[145] 0.8748 0.7826 0.6702 0.7727 0.8659 (0.89)N
Wafer-ds 0.8571 0.7312 0.8033 0.8953 -
vehicle 0.8880 0.8415 0.9027 0.6591 -
Cnae-9 0.9671 0.8803 0.7922 0.8365 -
Gas Sens 0.9739 0.9843 0.9256 0.9468 -
Covertype 0.8344 0.7307 0.7890 0.6521 -
Kc1 0.8793 0.7097 0.7697 0.8552 -

.

.

.
. . .

. . .
. . .

. . .
.
.
.

jannis 0.6719 0.7229 0.6171 0.6845 -
MiniBooNE 0.9645 0.9423 0.8343 0.8903 -
Higgs 0.713 0.726 0.7135 0.729 -
Credi-g 0.7921 0.7188 0.5739 0.6121 -
kr-vs-kp 0.9976 0.9209 0.6532 0.7593 -
car 0.9754 0.9999 0.8549 0.9462 -
albert 0.8759 0.8005 0.8288 0.7981 -
airlines 0.6982 0.6758 0.7094 0.5927 -

Best performance 19 6 2 3 -

30/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Empirical study
Experimental results : The run-time

Table 2: The run-time of the AMLBID, Autosklearn and TPOT tools on the benchmark datasets.

Dataset Dataset size AMLBID Autosklearn TPOT

[137] 959 00:00:05 01:23:47 00:08:14
[138] 2000 00:00:12 01:49:21 00:13:57
[139] 61000 00:05:29 04:19:05 03:42:09
[141] 274627 00:11:43 08:19:37 06:09:51
[142] 5000 00:01:27 02:31:07 01:38:36
[143] 1567 00:00:53 01:33:45 00:19:47
[144] 5388 00:00:57 01:56:50 00:55:51
[145] 1567 00:00:33 00:58:50 00:21:12
Wafer-ds 7306 00:02:17 03:44:26 01:42:21
vehicle 8463 00:02:28 02:12:40 01:45:40
Cnae-9 63260 00:05:47 04:07:39 03:24:52
Gas Sens 4188 00:01:14 02:47:20 00:42:36
Covertype 25524 00:03:04 01:28:31 01:36:14
Kc1 2108 00:00:38 04:19:26 04:51:02

.

.

.
. . .

. . .
. . .

. . .

jannis 8641 00:01:41 02:31:07 01:41:51
MiniBooNE 52147 00:04:23 03:59:56 02:11:01
Higgs 110000 00:06:16 07:37:55 05:43:24
Credi-g 30000 00:04:39 02:03:34 05:33:03
kr-vs-kp 3196 00:00:54 01:17:19 00:22:44
car 1728 00:00:38 01:38:30 00:40:07
albert 43824 00:06:27 04:09:17 03:01:03
airlines 5473 00:01:40 02:18:27 00:57:52

30/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Empirical study
Experimental results : The run-time

Table 2: The run-time of the AMLBID, Autosklearn and TPOT tools on the benchmark datasets.

Dataset Dataset size AMLBID Autosklearn TPOT

[137] 959 00:00:05 01:23:47 00:08:14
[138] 2000 00:00:12 01:49:21 00:13:57
[139] 61000 00:05:29 04:19:05 03:42:09
[141] 274627 00:11:43 08:19:37 06:09:51
[142] 5000 00:01:27 02:31:07 01:38:36
[143] 1567 00:00:53 01:33:45 00:19:47
[144] 5388 00:00:57 01:56:50 00:55:51
[145] 1567 00:00:33 00:58:50 00:21:12
Wafer-ds 7306 00:02:17 03:44:26 01:42:21
vehicle 8463 00:02:28 02:12:40 01:45:40
Cnae-9 63260 00:05:47 04:07:39 03:24:52
Gas Sens 4188 00:01:14 02:47:20 00:42:36
Covertype 25524 00:03:04 01:28:31 01:36:14
Kc1 2108 00:00:38 04:19:26 04:51:02

.

.

.
. . .

. . .
. . .

. . .

jannis 8641 00:01:41 02:31:07 01:41:51
MiniBooNE 52147 00:04:23 03:59:56 02:11:01
Higgs 110000 00:06:16 07:37:55 05:43:24
Credi-g 30000 00:04:39 02:03:34 05:33:03
kr-vs-kp 3196 00:00:54 01:17:19 00:22:44
car 1728 00:00:38 01:38:30 00:40:07
albert 43824 00:06:27 04:09:17 03:01:03
airlines 5473 00:01:40 02:18:27 00:57:52

31/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Learning abstract tasks representation

1 Context

2 Problem Statement and the State of the art

3 Research work
Towards a Meta-learning based AutoML framework for Industrial big data
Learning abstract tasks representation
Towards interactive explainable AutoML
AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives

32/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Learning abstract tasks representation

Meta-learning

MetaData Meta-Learner New dataset

M
e

ta

d
a

ta
s

e
t

M
e

ta

m
o

d
e

l

R
a

n
k

in
g

Meta-learning
space

Perform
learning

Recommend

Appropriate data characterization is crucial for the meta-learning

Proper form of data characterization can guide the process of
learning algorithms selection and configuration

33/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Learning abstract tasks representation

Data characterization

Hand-designed meta-features

Simple, Statistical & Info. theoretic

Landmarking

Model-based

Data Complexity

But?

What criteria should we invoke to
include or discard a family of
meta-features?

Datasets may share identical statistical properties
but noticeably they have different data distributions.

negatively sloping lines (Figure 7B). The resulting dataset
(Figure 7C) has the same positive correlation as the initial
dataset when looked at as a whole, while the individual
groups each have a strong negative correlation.

Figure 7. Demonstration of Simpson's Paradox. Both
datasets (A and C) have the same overall Pearson's
correlation of +0.81, however after coercing the data
towards the pattern of sloping lines (B), each subset of data
in (C) has an individually negative correlation.

Example 5: Cloned Dataset with Similar Appearance
As discussed by Govindaraju and Haslett [8] another use for
datasets with the same statistical properties is the creation of
“cloned” datasets to anonymize sensitive data [6]. In this
case, it is important that individual data points are changed
while the overall structure of the data remains similar. This
can be accomplished by performing a Kolmogorov-Smirnov
test within the ISERROROK function for both x and y. By only
accepting solutions where both the x and y K-S statistic is
<0.05 we ensure that the result will have a similar shape to
the original (Figure 8). This approach has the benefit of
maintaining the x/y means and correlation as accomplished
in previous work [8], and additionally the x/y standard
deviations as well. This could also be useful for “graphical
inference” [12] to create a collection of variant plots
following the same null hypothesis.

Figure 8. Example of creating a “mirror” dataset as in [8].

Example 6: 1D Boxplots
To demonstrate the applicability of our approach to non 2D-
scatterplot data, this example uses a 1D distribution of data
as represented by a boxplot. The most common variety of
boxplot, the “Tukey Boxplot”, presents the 1st quartile,
median, and 3rd quartile values on the “box”, with the
“whiskers” showing the location of the furthest datapoints
within 1.5 interquartile ranges (IQR) from the 1st and 3rd
quartiles. Starting with the data in a normal distribution
(Figure 9A) and perturbing the data to the left (B), right (C),

edges (D, E), and arbitrary points along the range (F) while
ensuring that the boxplot statistics remain constant produces
the results shown in Figure 9.

Figure 9. Six data distributions, each with the same 1st
quartile, median, and 3rd quartile values, as well as equal
locations for points 1.5 IQR from the 1st and 3rd quartiles.
Each dataset produces an identical boxplot.

LIMITATIONS AND FUTURE WORK
When the source dataset and the target shape are vastly
different, the produced output might not be desirable. An
example is show Figure 10, where the data set from Figure
7A is coerced into a star (Figure 10). This problem can be
mitigated by coercing the data towards “simpler” patterns
with more coverage of the coordinate space – such as lines
spanning the grid, or pre-scaling and positioning the target
shape to better align with the initial dataset.

Figure 10. Undesirable outcome (C) when coercing a
strongly positively correlated dataset (A) into a star (B).

The currently implemented fitness function looks only at the
position of individual points in relation to the target shape,
which can result in “clumping” of data points and sparse
areas on the target shape. A future improvement could
consider an additional goal to “separate” the points to
encourage better coverage of the target shape in the output.

The parameters chosen for the algorithm (95% success rate,
quadratic cooling scheme, start/end temperatures, etc.) were
found to work well, but should not be considered “optimal”.
Such optimization is left as future work.

The code and datasets presented in this work are available at
www.autodeskresearch.com/publications/samestats.

CONCLUSION
We presented a technique for creating visually dissimilar
datasets which are equal over a range of statistical properties.
The outputs from our method can be used to demonstrate the
importance of visualizing your data, and may serve as a
starting point for new data anonymization techniques.

A C

B

“Cloned” DataOriginal Data Comparison

−10 −5 0 5 10

A

B

C

D

E

F

A B C

All about Data CHI 2017, May 6–11, 2017, Denver, CO, USA

1293

[Matejka et al. (2017)]

34/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Learning abstract tasks representation

Data characterization

Graph-based dataset Representation

Represents datasets as graphs and
then extracts their latent
representation.

Vertices represent the dataset
instances

Edges indicate the existence of a
sufficiently high co-occurrence
score among them.

Algorithm 1 Generating graphical representations of dataset
1: procedure GenerateGraph(dataset D)
2: decisionTrees ← RandomForest(D)
3: leaves ← decisionTrees .GetLeaves()
4: leaves ← RemoveLowCoOccurrences(leaves)
5: E← ∅
6: V← D.GetInstances()
7: for each (A, B) in V do
8: CoScore ← leaves .GetCoOcurrence(A, B)
9: E ← E∪(A, B, CoScore)
10: return (V, E)

Inst. X1 Forest

Inst. X2 Forest

… …

… …

Inst.
X1

Inst.
X2

The generated graph

2

Classification Generation

Figure 3: Representation step. Inst. X1 and Inst. X2 fall in
the same leaf in two trees, and therefore the co-occurrence
score of them is two.

4.2.3 The modeling step: ranking meta-learning model. To train
a ranking classifier capable of utilizing the meta-features described
above, we produce a large labeled training set using the following
process:

1) Given a set of datasets D and a set of learning algorithms L,
we evaluate all combinations of d ∈ D and l ∈ L. We denote the
result of this evaluation as Rl,d .

2) For each combination of d ∈ D and l ∈ L, we create a set of
meta-features that consists of the following: a)Md – the set of meta-
features generated in the extraction step (described in Subsection
4.2.2); b) Ml – a single discrete feature describing l ; and c) Rl,d –
the results of the evaluation of l on d .

3) We train the XGBoost algorithm [6] on the joint set {Md ∪
Ml ,Rl,d } where we aim to predict the true ranking of algorithm l
based on its performance Rl,d . We chose XGBoost as our ranking
algorithm, since previous work [4] has shown that it well suited to
this.
The result of this step is a trained meta-ranking model, capable of
ranking every l ∈ L for previously unseen datasets. The modeling
step is presented in Algorithm 2.

4.3 The test phase
In this phase, we attempt to produce a list of learning algorithms,
ranked by their predicted performance on a previously unseen
dataset dnew . This process is described in Figure 4 and Algorithm
3. The steps of this phase are as follows:

Algorithm 2 Ranking meta-learning model generation
1: procedure GenerateModel(datasets D, algorithms L)
2: MetaFeatures← ∅
3: for each d in D do
4: Md ←MetaFeatureExtraction(d) ▷ See Section 4.2.2
5: for each l in L do
6: Rl,d ← EvaluatePerformance(d ,l)
7: Ml ← DiscreteFeatureExtraction(l)
8: f eatures ←(Md ∪Ml , Rl,d)
9: MetaFeatures ← (f eatures ∪MetaFeatures)
10: RankinдModel ← XGBoost (MetaFeatures)
11: return RankingModel

New
Dataset

New
Dataset

Classification Random
Forest

Generation
Graphical Representation

Best Algorithm
1

2

3

4

Extraction
Graphical Meta-Features

Ranking
Meta-Learnnig Model

+ Task

+ Evaluation Measure

Figure 4: AutoGRD testing flow

1) We generate Mdnew the set of meta-features described in
Section 4.2.2 for dnew .

2) For each l ∈ L, we generate Ml and concatenate it to a copy
ofMdnew .

3) Once Mdnew ∪ Ml has been generated for every l ∈ L, we
provide all meta-feature vectors to the trained XGBoost model and
use it to produce Rl,dnew – a ranked list of all algorithms, ordered
by their predicted performance.

5 EVALUATION
In our evaluation, we examine our method as a meta-learning ap-
proach, in terms of its accuracy in the task of recommending the
appropriate algorithm for a problem, and compare the advantages
of our method in this respect to those of other methods.

We evaluate AutoGRD for two types of tasks: classification and
regression. In our evaluation we used 150 and 100 datasets for the
classification and regression tasks, respectively. All datasets are

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

825

[Cohen-Shapira et al. (2019)]

This approach suffers from a computational
complexity of O(V 4) where V is the number of
vertices in the analyzed graph.

35/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Learning abstract tasks representation

The AeKNN meta-model with built in data characterization

𝑿𝒏×𝒑

𝒏 samples

𝒑 features

𝒛𝟏

𝒙𝒑

𝒙𝟐

𝒙𝟏

𝒛𝟐

𝒛𝒎

𝒛𝟏 = 𝑺𝒇(𝒘𝟏𝒙𝒋 + 𝒃)

𝒛𝟐 = 𝑺𝒇(𝒘𝟐𝒙𝒋 + 𝒃)

𝒛𝒎 = 𝑺𝒇(𝒘𝒎𝒙𝒋 + 𝒃)

KB

Optimal
pipelines

P1 | P2 | Pk

KNN

Latent meta-features extraction

Initial MF

Latent MF

Dataset
MFE

Search for similar tasks

36/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Learning abstract tasks representation

The AeKNN meta-model

Datasets

Meta-Dataset

Encoder

KNN

Decoder

Autoencoder

Encoder

F1 F2 F3 F4 … F6 F7 F8 F9 F n

Meta-features vector

Optimal
pipelines

P1 | P2 | Pk

MFE: Meta-Features Extraction
LMF: Latent Meta-Features

LMF

Inferring_______________________

Learning______________________

 Dataset

KB

•Meta-Datasets
• Performance results

4.3. The AekNN based data characterization approach 107

Datasets

Meta-Dataset

Encoder

KNN

Decoder

Autoencoder

Encoder

F1 F2 F3 F4 … F6 F7 F8 F9 F n

Meta-features vector

Optimal
pipelines

P1 | P2 | Pk

MFE: Meta-Features Extraction
LMF: Latent Meta-Features

LMF

Inferring_______________________

Learning______________________

Dataset

KB

•Meta-Datasets
• Performance results

Figure 4.3: Overview of proposed AeKNN-based meta-model.

Algorithm: AeKNN algorithm’s pseudo-code.
Input : Train Data, Test Data, KB . KB is the constructed knowledge base
Output : P< P1, P2, P3, . . . , Pn > . Suggested pipelines
Learning phase :

1: MetaData← MetaFeaturesExtractor(TrainData)
2: AE← Autoencoder(MetaData)
3: EncoderModel← FeedForwardAEModel(AE)
4: LatentMetaFeatures← EncoderModel(TrainData)
5: AeKNN ← KNN(LatentMetaFeatures, KB)

Inferring phase :
6: MetaFeatures← MetaFeaturesExtractor(TestData)
7: LatentMetaFeatures← EncoderModel(MetaFeatures)
8: OptimalP iplines← AeKNN(LatentMetaFeatures, KB)

phase (encoder model). It produces a new dataset characterization (latent meta-
features), which is more compact representative (line 7) of data. In fact, this new
set of features is used by the AeKNN meta-model to recommend the optimal
pipeline (s) for the given problem (test dataset) (line 8). An illustrative example
of this process is shown in Figure 4.4.

Work in progress as of March 7, 2022

37/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Learning abstract tasks representation

AekNN foundations
Autoencoders

Encoder

Z = E(X) that encodes the high dimensional
input data X = {x1, x2, .., xn} into a low
dimensional hidden representation
Z = {z1, z2, zm} by an activation function f

Decoder

decoding function X ′ = D(Z) that
produces a reconstruction of the inputs
X ′ = {x ′1, x ′2, . . . , x ′n}, while minimizing
the reconstruction error L(X ,X ′).

L(X ,X ′) = −
∑n

i=1(xi log x ′i) + (1− xi) (xi log (1− x ′i))

38/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Learning abstract tasks representation

Experimental study
AeKNN architectures analysis

AeKNN is characterized by the li
n parameter that establishes the architecture of the

network. This parameter allows the selection of different architectures in terms of
depth (number of layers) and number of neurons per layer.

Table 3: Experimental configurations of AeKNN.

Model Number of
Number of neurons per layer

Architecture li
n

hidden layers L 1 L 2 Latent layer L 4 L 5

AeKNN1 1 - - 32 - - (32)
AeKNN2 1 - - 16 - - (16)
AeKNN3 1 - - 8 - - (8)
AeKNN4 3 32 - 16 - 32 (32,16,32)
AeKNN5 5 32 16 8 16 32 (32,16,8,16,32)

39/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Learning abstract tasks representation

The AeKNN meta-model
AeKNN architectures analysis

Table 4: Accuracy classification results of the recommended pipelines for the considered AeKNN
architectures.

Dataset
AeKNN

(32) (16) (8) (32,16,32) (32,16,8,16,32)

APSFailure 0.9921 0.9734 0.86475 0.9033 0.8325
Higgs 0.7283 0.6911 0.4872 0.6398 0.5316
CustSat 0.8155 0.7826 0.5318 0.8559 0.6943
car 0.9999 0.9808 0.7049 0.9203 0.8277
kr-vs-kp 0.9976 0.8130 0.6532 0.7330 0.7291
airlines 0.6982 0.6833 0.5627 0.7167 0.4334
vehicle 0.8880 0.8934 0.3591 0.8004 0.4098
MiniBooNE 0.9645 0.9217 0.8143 0.85 0.7436
jannis 0.7229 0.6843 0.6371 0.6911 0.6608
nomao 0.9708 0.9719 0.5395 0.6994 0.4659
Credi-g 0.7921 0.6502 0.5121 0.3871 0.4768
Kc1 0.8793 0.8754 0.3597 0.7488 0.5691
Cnae-9 0.9671 0.8923 0.5622 0.5208 0.6049
albert 0.8759 0.8131 0.6981 0.8439 0.9053
Numerai28.6 0.5207 0.4530 0.3029 0.4760 0.2810
segment 0.9735 0.9622 0.8837 0.9508 0.5791
Covertype 0.8344 0.7189 0.6521 0.6305 0.4620
KDDCup 0.9740 0.8514 0.8034 0.8821 0.8572
shuttle 0.9362 0.9997 0.6429 0.8576 0.6744
Gas Sens-uci 0.9843 0.9755 0.7256 0.9667 0.7032

Best performance 14 3 0 2 1

39/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Learning abstract tasks representation

The AeKNN meta-model
AeKNN architectures analysis

Table 4: F1-Score classification results of the recommended pipelines for the considered AeKNN
architectures.

Dataset
AeKNN

(32) (16) (8) (32,16,32) (32,16,8,16,32)

APSFailure 0.9823 0.7553 0.9875 0.7573 0.9055
Higgs 0.8743 0.5451 0.5602 0.4938 0.5316
CustSat 0.9250 0.6366 0.4953 0.8194 0.5483
car 0.9635 0.9874 0.8144 0.7613 0.6817
kr-vs-kp 0.9246 0.7035 0.6532 0.5870 0.8751
airlines 0.5887 0.7928 0.5992 0.5707 0.3604
vehicle 0.8515 0.8204 0.2131 0.9099 0.3733
MiniBooNE 0.9715 0.9871 0.8873 0.7405 0.8531
jannis 0.7229 0.5748 0.8068 0.6911 0.6006
nomao 0.9343 0.9213 0.5395 0.8454 0.4294
Credi-g 0.9381 0.5772 0.5661 0.4141 0.5863
Kc1 0.9321 0.8389 0.9523 0.8583 0.4596
Cnae-9 0.8962 0.8741 0.6352 0.5938 0.7509
albert 0.8394 0.7036 0.6251 0.8074 0.9783
Numerai28.6 0.3747 0.5260 0.3029 0.4395 0.3540
segment 0.9130 0.8830 0.8837 0.7139 0.5426
Covertype 0.6886 0.6824 0.7249 0.4845 0.4620
KDDCup 0.9571 0.9974 0.7669 0.8386 0.7112
shuttle 0.9653 0.8537 0.4969 0.8306 0.7109
Gas Sens-uci 0.6161 0.8660 0.9667 0.7667 0.8492

Best performance 8 5 5 1 1

39/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Learning abstract tasks representation

The AeKNN meta-model
AeKNN architectures analysis

Table 4: AUC classification results of the recommended pipelines for the considered AeKNN
architectures.

Dataset
AeKNN

(32) (16) (8) (32,16,32) (32,16,8,16,32)

APSFailure 0.9191 0.9763 0.8648 0.8639 0.7230
Higgs 0.7283 0.8371 0.3412 0.5668 0.5316
CustSat 0.9654 0.6731 0.6413 0.8155 0.7673
car 0.9608 0.9269 0.9873 0.5298 0.6817
kr-vs-kp 0.7765 0.9103 0.6167 0.8790 0.5831
airlines 0.8627 0.5373 0.6357 0.8442 0.5794
vehicle 0.9610 0.8569 0.3956 0.5464 0.5558
MiniBooNE 0.8550 0.9947 0.7873 0.7230 0.5976
jannis 0.7338 0.7229 0.4911 0.6911 0.5383
nomao 0.8594 0.8423 0.8978 0.5899 0.6119
Credi-g 0.9381 0.7232 0.5121 0.4601 0.3308
Kc1 0.7333 0.9119 0.3962 0.6028 0.6421
Cnae-9 0.8941 0.8433 0.4162 0.5938 0.4954
albert 0.9124 0.9226 0.6616 0.7344 0.7593
Numerai28.6 0.6302 0.5435 0.2664 0.3665 0.2080
segment 0.8900 0.8527 0.6548 0.4362 0.4331
Covertype 0.7979 0.6459 0.7981 0.6670 0.4620
KDDCup 0.9876 0.7419 0.9408 0.6587 0.7477
shuttle 0.9727 0.9267 0.7159 0.9306 0.7839
Gas Sens-uci 0.8748 0.8295 0.7986 0.5572 0.7762

Best performance 11 6 3 0 0

40/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Learning abstract tasks representation

The AeKNN meta-model
AeKNN architectures analysis

It is considered that li
n = (32) is the best among the considered architectures with a

reconstruction error standard deviation of 0.020025

41/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Learning abstract tasks representation

The AeKNN meta-model
Results of the algorithms selection process

Table 5: Results of RF, XGB, KNN, and AeKNN meta-models for
recommending optimal pipelines for test data.

Dataset
Accuracy

AeKNN KNN XGB RF

APSFailure 0.9921 (0.11)N 0.9910 0.9673 0.8950
Higgs 0.7283 (1.53)N 0.7130 0.6801 0.6072
CustSat 0.8155 (4.04)H 0.8559 0.8715 0.7382
car 0.9999 (2.45)N 0.9754 0.9462 0.8549
kr-vs-kp 0.9985 (0.09)N 0.9976 0.7593 0.6532
airlines 0.7021 (0.39)N 0.6982 0.7094 0.5927
vehicle 0.8952 (0.72)N 0.8880 0.9027 0.6591
MiniBooNE 0.9730 (0.85)N 0.9645 0.8903 0.8343
jannis 0.7229 (5.10)N 0.6719 0.6845 0.6171
nomao 0.9884 (1.76)N 0.9708 0.7987 0.6995
Credi-g 0.8037 (1.16)N 0.7921 0.5739 0.6121
Kc1 0.8905 (1.12)N 0.8793 0.7697 0.7097
Cnae-9 0.9800 (1.29)N 0.9671 0.8365 0.7922
albert 0.8790 (0.31)N 0.8759 0.8288 0.7981
Numerai28.6 0.5591 (3.84)N 0.5207 0.4836 0.4229
segment 0.9867 (1.32)N 0.9735 0.9542 0.9337
Covertype 0.8637 (2.93)N 0.8344 0.7890 0.6521
KDDCup 0.9781 (0.41)N 0.9740 0.9331 0.8934
shuttle 0.9362 (2.87)H 0.9649 0.9649 0.8429
Gas Sens-uci 0.9843 (1.04)N 0.9739 0.9468 0.9256

42/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Learning abstract tasks representation

The AeKNN meta-model
Results of latent meta-features extraction

42/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Learning abstract tasks representation

The AeKNN meta-model
Results of latent meta-features extraction

43/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards interactive explainable AutoML

1 Context

2 Problem Statement and the State of the art

3 Research work
Towards a Meta-learning based AutoML framework for Industrial big data
Learning abstract tasks representation
Towards interactive explainable AutoML
AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives

44/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards interactive explainable AutoML

AutoML Process

Evaluate Performance “Guess” new
ML Settings Optimized ML-Pipeline

Pre-
Processing

Normalization,
Feature Selection,
Feature Reduction,
….

Predictive
Model

𝑨𝑨𝑯𝑯∗
(𝒊𝒊)

Post-
Processing

Train ML Model

AutoML

Loop

𝓛𝓛(𝑨𝑨𝑯𝑯,𝑫𝑫𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑫𝑫𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗)

𝑨𝑨𝑯𝑯∗
(𝒊𝒊) ∈ argmin

 𝑨𝑨(𝒊𝒊)∈𝓐𝓐,𝑯𝑯∈𝓗𝓗
𝓛𝓛(𝑨𝑨𝑯𝑯,𝑫𝑫𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑫𝑫𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗

𝑨𝑨𝑯𝑯∗
(𝒊𝒊)

A : Algorithms space

H : Hyperparameters space
L : Loss function

Notation reminder

Fully automated ML design can also receive pushback

Did the AutoML run long enough?

Did the AutoML miss some suitable models?

Did the AutoML sufficiently explore the search space?

Did the recommended configuration over or under fit?

How to verify results?

45/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards interactive explainable AutoML

Humans and AutoML

Who is using AutoML?

Users without any deep expertise in ML ML experts & researchers, data scientists

[Bouthillier et al. (2020)] showed that
authors of NeurIPS and ICLR papers :

often optimize their pipelines
hyperparameters (> 75%)

often do it manually and don’t use
AutoML tools

[Crisan et al. (2021)] interviewed data
scientists and concluded :

experts don’t necessarily trust AutoML

visualization of results and interaction
with processes can help to increase the
acceptance of AutoML

46/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards interactive explainable AutoML

Towards Interactive eXplainable AutoML (IXAutoML)
What we are aiming for?

An ideal XAI system should be flexible enough to adapt to the AutoML output (model
and data agnostic).

Interpretability

How a prediction is
made by the model

Explainability

Why can we learn
from the model

Trustworthiness

How trustworthy is
the model’s prediction

47/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards interactive explainable AutoML

Towards Interactive eXplainable AutoML (IXAutoML)

Pipelines recommendation (AMLBID)

Interactive dashboard generation Data input

Reporting & Trust building

Dataset

Tasks

AMLExplainer

XAI
Input

Explanations
generation

XAI
Output

Explanations

Improvement

(Visualisation, plots..)

(ANOVA analysis)

Recommendation properties

Model summary & Classification stats.

Features importance & dependence

What-if-analysis & Interaction

Decision path

Recommendation refinement

R
ef

in
em

en
t

U
nd

er
st

an
di

ng

D
ia

gn
os

is

AutoML
Input

AutoML
Output

Pipeline1

Pipeline2

Pipeline3 (2) (1)

Properties
(1) Search space exploration
(2) Ranked recommendation

48/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

Towards interactive explainable AutoML

Demonstration

49/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

AMLBID : a self-explainable AutoML software package

1 Context

2 Problem Statement and the State of the art

3 Research work
Towards a Meta-learning based AutoML framework for Industrial big data
Learning abstract tasks representation
Towards interactive explainable AutoML
AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives

50/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

AMLBID : a self-explainable AutoML software package

AMLBID : Democratization of explainable machine learning

It is open-source (MIT) and trivial to use.

Downloaded more than 17.753 times on PyPI in its first year.

Multiple industrial requests.

1 import numpy as np

2 import pandas as pd

3 from sklearn.tree import DecisionTreeClassifier

4 from sklearn.metrics import classification_report

5 from sklearn.model_selection import train_test_split

6

7 data = pd.read_csv("Dataset.csv")

8

9 X = data.drop(’class ’, axis =1)

10 Y = data[’class ’]

11

12 X_train , X_test , Y_train , Y_test = train_test_split(X, Y,

test_size =0.3, random_state =42)

13

14 model= DecisionTreeClassifier(criterion=’entropy ’,

15 max_features =0.5672564 ,

16 min_samples_leaf =5,

17 min_samples_split =20)

18

19 model.fit(X_train , Y_train)

20

21 Y_pred = model.predict(X_test)

22 score = model.score(X_test , Y_test)

23

24 print(classification_report(Y_test , Y_pred))

25 print(’ Pipeline test accuracy: %.3f’ % score)

Listing 2: Generated python file.

3.2. Recommendation Explainer module

1 from AMLBID.recommender import AMLBID_Recommender

2 from AMLBID.explainer import AMLBID_Explainer

3

4 model ,config=AMLBID_Recommender.recommend(Data , metric , mode)

5 model.fit(X_train , Y_train)

6

7 Explainer = AMLBID_Explainer.explain(model , config , Data)

8 Explainer.dash()

Listing 3: Illustrative code example of recommendation explainer module.

4. Impact

In practice, the ML modeling process is a highly iterative exploratory
process. In particular, there is no one-size-fits-all model solution, i.e, there
does not exist a single model or algorithm which can be used to achieve the
highest accuracy for all data set varieties in a certain application domain.

8

50/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

AMLBID : a self-explainable AutoML software package

AMLBID : Democratization of explainable machine learning

It is open-source (MIT) and trivial to use.

Downloaded more than 17.753 times on PyPI in its first year.

Multiple industrial requests.

10-18
10-25

11-01
11-08

11-15
11-22

11-29
12-06

12-13
12-20

12-27
01-03

01-10
01-17

01-24
01-31

02-07
02-14

0%

20%

40%

60% 2
3
Null

Date

D
ow

nl
oa

d
Pr

op
or

tio

10-18
10-25

11-01
11-08

11-15
11-22

11-29
12-06

12-13
12-20

12-27
01-03

01-10
01-17

01-24
01-31

02-07
02-14

0

500

1,000

1,500

2,000

2,500

2.7
3.10
3.5
3.6
3.7
3.8
3.9
Null

30d 60d 90d 120d all

Daily Download Quantity of pdpbox package - Python Minor

Date

D
ow

nl
oa

ds

10-18
10-25

11-01
11-08

11-15
11-22

11-29
12-06

12-13
12-20

12-27
01-03

01-10
01-17

01-24
01-31

02-07
02-14

0%

20%

40%

60%

80%

100%

2.7
3.10
3.5
3.6
3.7
3.8
3.9
Null

30d 60d 90d 120d all

Daily Download Proportions of pdpbox package - Python Minor

Date

D
ow

nl
oa

d
Pr

op
or

tio
n

10-18
10-25

11-01
11-08

11-15
11-22

11-29
12-06

12-13
12-20

12-27
01-03

01-10
01-17

01-24
01-31

02-07
02-14

0

200

400

600

800

Darwin
Linux
Windows
Null

30d 60d 90d 120d all Daily Download Quantity of AMLBID package - System

Date

D
ow

nl
oa

ds

100%
30d 60d 90d 120d all

Daily Download Proportions of pdpbox package - System

50/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Research work

AMLBID : a self-explainable AutoML software package

AMLBID : Democratization of explainable machine learning

It is open-source (MIT) and trivial to use.

Downloaded more than 17.753 times on PyPI in its first year.

Multiple industrial requests.

10-18
10-25

11-01
11-08

11-15
11-22

11-29
12-06

12-13
12-20

12-27
01-03

01-10
01-17

01-24
01-31

02-07
02-14

0%

20%

40%

60% 2
3
Null

Date

D
ow

nl
oa

d
Pr

op
or

tio

10-18
10-25

11-01
11-08

11-15
11-22

11-29
12-06

12-13
12-20

12-27
01-03

01-10
01-17

01-24
01-31

02-07
02-14

0

500

1,000

1,500

2,000

2,500

2.7
3.10
3.5
3.6
3.7
3.8
3.9
Null

30d 60d 90d 120d all

Daily Download Quantity of pdpbox package - Python Minor

Date

D
ow

nl
oa

ds

10-18
10-25

11-01
11-08

11-15
11-22

11-29
12-06

12-13
12-20

12-27
01-03

01-10
01-17

01-24
01-31

02-07
02-14

0%

20%

40%

60%

80%

100%

2.7
3.10
3.5
3.6
3.7
3.8
3.9
Null

30d 60d 90d 120d all

Daily Download Proportions of pdpbox package - Python Minor

Date

D
ow

nl
oa

d
Pr

op
or

tio
n

10-18
10-25

11-01
11-08

11-15
11-22

11-29
12-06

12-13
12-20

12-27
01-03

01-10
01-17

01-24
01-31

02-07
02-14

0

200

400

600

800

Darwin
Linux
Windows
Null

30d 60d 90d 120d all Daily Download Quantity of AMLBID package - System

Date

D
ow

nl
oa

ds

100%
30d 60d 90d 120d all

Daily Download Proportions of pdpbox package - System

51/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Conclusion & perspectives

1 Context

2 Problem Statement and the State of the art

3 Research work
Towards a Meta-learning based AutoML framework for Industrial big data
Learning abstract tasks representation
Towards interactive explainable AutoML
AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives

52/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Conclusion & perspectives

Perspectives

Expand AMLBID

Support the algorithms of :
Regression
Deep learning
Distributed ML (Spark ML)

Cover the tasks of :
Data pre-processing
Features engineering
Post-processing analysis

Enrich the Meta-KB from collaborative ML platforms (Kaggle, OpenML, etc.)

Explore the inclusion of AutoXAI in the AMLexplainer explanatory artefact

Explore the use of the constructed knowledge base for further guidance and
automation of ML applications

	Context
	Problem Statement and the State of the art
	Research work
	Towards a Meta-learning based AutoML framework for Industrial big data
	Learning abstract tasks representation
	Towards interactive explainable AutoML
	AMLBID: a self-explainable AutoML software package

	Conclusion & perspectives

