

Model Lake: a New Alternative for Machine Learning Models Management and Governance

Institut de Recherche

CNRS - INP - UT3 - UT

en Informatique de Toulouse

- UT2J

Moncef Garouani¹, Franck Ravat¹, Nathalie Valles-Parlangeau²

¹ IRIT, UMR5505 CNRS, Université Toulouse Capitole, Toulouse, France
 ² LIUPPA, Université de Pau et des Pays de l'Adour, Anglet, France

moncef.garouani@irit.fr

Slides available at mgarouani.fr/talks -> WISE 2024 Presentation

Introduction & Context

1

5

2

PLAN)

Problem Statement

3 Model Lake

4 Model Lake Management System

Conclusion and Discussion

Context: Success of Machine Learning & Deep Learning (1/2)

Context: Management problem of ML/DL Models (2/2)

- How can we manage and understand many available ML models?
- How can we know what a model does and how it was trained?
- How can we ensure ethical use and trace model lineage?
- How can we ensure compliance with regulations?
- How can we improve models to avoid mistakes?

Model Repository, Registry, Zoo, ...

Model Reuse in the Hugging Face Registry (W. Jiang et al.):

Study Approach:

- Interviews with 12 practitioners to identify challenges.
- Analysis of 63,182 models in the registry.

Key Challenges:

- Missing attributes: model lineage, training data.
- Disparities in claimed vs. actual performance.
- Privacy and ethical concerns due to opaque data lineage.

Model Repository, Registry, Zoo, ...

Analysis of Hugging Face Model Cards (W. Liang et al.):

Study Scope:

- Analyzed 74.970 model repositories from 20.455 user accounts.
- Found only 32.111 repositories (44.2%) include model cards.

Key Insights:

- Over 56% of models lack proper documentation, reducing reliability.
- Highlights the need for data-centric approaches to improve ٠ model quality and support responsible AI development.

Data Lake efficiency

Model Lake Definition

Definition. Model Lake stands as an integrated ecosystem encompassing respectively the input, process, output and governance aspects of both mined data and developed models. It acts as a centralized hub and management system accommodating diverse data and model types, meeting the requirements of various stakeholders including data engineers, data scientists, data analysts, and business intelligence professionals.

Key Functionalities:

- Raw data ingestion, processing, storage, and governance.
- Model training, fine-tuning, review, and monitoring.
- Data, model, and code provenance, management, and governance.

Model Lake Architecture

Fig. 1. The proposed Model Lake architecture.

Data Zone :

- Purpose: Manages data ingestion, processing, and intermediate storage.
 - •Ingestion: Connects to data sources for extraction and change tracking.
 - •**Processing**: Standardizes raw data with operations like integration, cleaning, transformation, and reduction.
 - •Intermediate Storage: Saves processed data and metadata for lineage tracking.
- □ Key Role: Prepares data for analysis.

Model Lake Architecture

Fig. 1. The proposed Model Lake architecture.

Analysis Zone :

Purpose: Central hub for data exploration and ML model development.

Given Sequences: Key Features:

- •Advanced data exploration (meta-features, attributes, transformations).
- •ML model development and evaluation.
- •Model storage for production.

□ Additional Capabilities:

•Continuous monitoring and feedback for performance and reliability.

•Lineage tracking, model comparison, auditing, and compliance.

Model Lake Architecture

Fig. 1. The proposed Model Lake architecture.

Governance and Management Zone:

•Purpose: ensure Data, Program, Model security, lifecycle management, access, and metadata management.

•Preventing Model Swamp:

•Maintains accessibility and usability of the Model Lake. •Metadata Store:

•Records metadata for all ML workflow tasks and iterations.

•Tracks job details (e.g., training date, artifact sources).

•Model Lineage:

•Combines data, model, and code lineage.

•Tracks metadata like feature data sources, parameters, and performance metrics.

•Ensures full traceability for each registered model.

Metadata Model on Data zone

We adopt the 5W1H (What, Who, Where, When, why, how) method to facilitate a systematic understanding of data ingestion and processing. This method prompts the following inquiries:

 What: Identifying external data sources and the nature of ingestion activities (ingested datasets, their quality, security level, and interrelations).

Who: Determining ownership of the source data, as well as the individuals responsible for data ingestion and processing.
Where: Locating the storage sites for ingested and processed datasets and associated data ingestion/processing code.

 When: Establishing timelines for the ingestion and processing of datasets.

– Why: Understanding the purpose behind the data processing activities.

- How: Understanding the ingestion and processing operations.

Metadata Model on Data zone

Metadata Model on Data Analysis

Conclusion & Perspectives

Conclusion

- Rapid ML model growth presents both opportunities and challenges,
- Lack of standardized management risks limiting their full potential.
- Model Lakes: A promising solution for centralized, scalable model management.
- Success requires collaboration across the ecosystem and commitment to responsible AI.

Perspectives

• Expand model lake system to include additional analysis types and ML pipeline artifacts.

16

• Develop a **recommender system** to enhance data and model search and discovery.

Model Lake: a New Alternative for Machine Learning Models Management and Governance

Institut de Recherche

CNRS - INP - UT3 - UT

en Informatique de Toulouse

- UT2J

Moncef Garouani¹, Franck Ravat¹, Nathalie Valles-Parlangeau²

¹ IRIT, UMR5505 CNRS, Université Toulouse Capitole, Toulouse, France
 ² LIUPPA, Université de Pau et des Pays de l'Adour, Anglet, France

moncef.garouani@irit.fr

Slides available at mgarouani.fr/talks -> WISE 2024 Presentation